一、题目。
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
提示:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-10^9 <= nums1[i], nums2[j] <= 10^9
二、代码。
1.直接排序
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
for (int i = 0; i < n; i++) {
nums1[m++]=nums2[i];
}
Arrays.sort(nums1);
}
}
2.从后往前比较
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
int i = m - 1, j = n - 1, k = m + n - 1;
while (i >= 0 && j >= 0) {
if (nums1[i] >= nums2[j]) nums1[k--] = nums1[i--];
else nums1[k--] = nums2[j--];
}
while (i >= 0) nums1[k--] = nums1[i--];
while (j >= 0) nums1[k--] = nums2[j--];
}
}
三、复杂度分析。
方法一:
- 时间复杂度:O(NlogN)
就是快排的时间复杂度
快排复杂度分析:因为快排的情况是将一个数组分为两组,每组都要遍历一次直到ij交换,再加上每次分两组在递归如果化为树状的话就是logN层,所以是O(NlogN)。 - 空间复杂度
由于树的高度为logN,所以为O(logN)
方法二:
- 时间复杂度
O(m+n) - 空间复杂度
O(m+n)