前缀和--美国USACO

题目描述

Farmer John's N cows are standing in a row, as they have a tendency to do from time to time. Each cow is labeled with a distinct integer ID number so FJ can tell them apart. FJ would like to take a photo of a contiguous group of cows but, due to a traumatic childhood incident involving the numbers 1…6he only wants to take a picture of a group of cows if their IDs add up to a multiple of 7.

Please help FJ determine the size of the largest group he can photograph.

给你n个数,分别是a[1],a[2],...,a[n]。求一个最长的区间[x,y],使得区间中的数(a[x],a[x+1],a[x+2],...,a[y-1],a[y])的和能被7整除。输出区间长度。若没有符合要求的区间,输出0。

输入格式

The first line of input contains N (1≤N≤50,000). The next N

lines each contain the N integer IDs of the cows (all are in the range

0…1,000,000).

输出格式

Please output the number of cows in the largest consecutive group whose IDs sum

to a multiple of 7. If no such group exists, output 0.

输入输出样例

输入 :7 3 5 1 6 2 14 10

输出:5

题目解答

题目分析

前缀和暴力求解

说到底,这个题其实就是告诉你有一个长度为n的数组,其中有一个区间里的所有数字的和为7的倍数,求这个区间的最大长度,没有则输出0。

注意到,如果按照正常思路,必须要求出某一段的区间和,而求区间和的最好方式则是用前缀和

前缀和表示从第一个数开始到某个数这个区间内的所有数的和,一般的,我用数组sum[i]来表示前缀和,及其定义为sum[i]=a_{1}+a_{2}+...+a_{i}=\sum_{t=1}^{i}a_{t},但是,如果我们每次都这样计算就太过繁琐了,仔细观察其定义式,我们可以发现sum[i]=a_{1}+a_{2}+a_{3}+...+a_{i-1}+a_{i}=sum[i-1]+a_{i}

因此,我们就可以用递推的方式来计算前缀和

sum[1]=a[1];//先给第一项赋值
for(int i=2;i<=n;i++) sum[i]=sum[i-1]+a[i];//前缀和

因此,区间[x,y]的和及sum[x,y]=a_{x}+a_{x+1}+...+a_{y}=(a_{1}+a_{2}+...+a_{y})-(a_{1}+a_{2}+...+a_{x-1})=sum[y]-sum[x-1]

 那么,我们就可以暴力枚举区间的起点和终点,然后计算区间和并判断,时间复杂度为O(n^{2})

很明显,时间超限,进行优化

优化

我们既然要保证最后的和能够去整除7,而我们的区间和是两个数相减的结果,那什么样的两数相减得到的结果能整除7呢?

如果有两个数a,b它们对一个数c求余相同,那么他们的差能被c整除!!!

这个定理很好得到,根据同余定理可以得到

(a-b) mod c=(amodc-bmodc+c)modc(a-b) mod c=cmodc=0

当a,b它们对c求余相同时,及amodc=bmodc,那么amodc-bmodc=0

所以(a-b) mod c=0

那么,我们何尝不将那些对7求余相同的放在一起,然后记录下他们的起点终点,计算出每个区间的长度,这样,可以保证所得结果均可以被7整除,将时间复杂度大大降低。从而通过!

理论存在,实践开始!

实现代码

首先,还是要建立一个前缀和数组,但是,记录的是当下前缀和对7求余的结果

int sum[50001];
sum[1]=a[1]%7;
for(int i=2;i<=n;i++) sum[i]=(sum[i-1]%7+a[i]%7)%7;//前缀和

我们需要将对7求余相同的放在一起,并记录下起点和终点。因此,我们可以建立一个二维数组,

第一行存储起点,第二行存储终点,一共7列,分别代表对7求余的7种结果

int b[7][2]; //记录起点终点

那么,我们如何确立不同余数的起点和终点坐标呢?

起点:因为我们默认数组里的数均为0,那么如果当下对应的第一行为0,那么就存进去

终点:如果不符合起点条件,直接存入即可,无需考虑

if(b[sum[i]][0]==0) b[sum[i]][0]=i;
else b[sum[i]][1]=i;

那么,如何计算最长长度呢?

如果前缀和对7求余不为0时,长度为终点-起点;

但如果前缀和对7求余为0时 ,长度就无须再减,就是终点下标

(注意,再有的情况下模7为0的前缀和只有一个,没有终点,此时长度为起点坐标)

因此,我们可以建立一个变量maxn为模7为0的长度,然后运用打擂台的方式选最高的

if(b[0][1]!=0) maxn=b[0][1];
else if(b[0][0]!=0) maxn=b[0][0];//初始化maxn为模7为0的长度
for(int i=1;i<7;i++)
maxn=max(b[i][1]-b[i][0],maxn);//不断比较赋值,确定最大

至此,这道题就解决完毕了,下面是完整代码

完整代码

#include<bits/stdc++.h>
using namespace std;
int sum[50001],b[7][2];
int main()
{
	int a[50001],n,maxn=0;
	cin>>n;
	cin>>a[1];    //输入
	sum[1]=a[1]%7;
	b[sum[1]][0]=1;
 	for(int i=2;i<=n;i++)
	{
		cin>>a[i];
		sum[i]=(sum[i-1]+a[i])%7;//前缀和
		if(b[sum[i]][0]==0) b[sum[i]][0]=i;
		else b[sum[i]][1]=i;//计算起点和终点
	}
	if(b[0][1]!=0) maxn=b[0][1];
	else if(b[0][0]!=0) maxn=b[0][0];//初始化maxn为模7为0的长度
	for(int i=1;i<7;i++)
	maxn=max(b[i][1]-b[i][0],maxn);//不断比较赋值,确定最大
	cout<<maxn;//输出
	return 0;
}

(凌晨1:32肝完的,点个赞吧,谢谢)【鞠躬】【鞠躬】【鞠躬】

  • 15
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值