在数据分析和机器学习领域,异常检测是一项重要的任务。异常数据点,也就是那些与数据集中大多数观测值具有显著不同属性的点,可能会对模型的训练和预测结果产生负面影响。本文将详细介绍一种流行的异常检测技术——基于角度的异常检测(Angle-based Outlier Detection,ABOD),包括其理论基础、算法原理,以及如何使用PyOD Python包来实现。
异常值的定义与检测意义
首先,我们需要明确什么是异常值。任何在数据集中具有与大多数观测值截然不同属性的观测或数据点都被称为异常值或异常点。数据集中出现异常值的原因有很多,比如仪器记录错误、人为错误,或者是与大多数群体的自然差异等。
在实际应用中,检测异常值具有重要意义。例如,在银行领域的欺诈交易检测中,识别出异常的交易行为可以有效防止金融诈骗;在电子商务领域,对销售高峰和低谷的分析可以帮助企业制定更合理的营销策略;在网络领域,识别出恶意节点或数据包可以保障网络的安全。此外,在训练机器学习模型时,处理数据集中的异常值也很关键,因为异常值可能会导致模型学习到有偏差的数据表示,从而影响模型的性能。
在一些领域,由于系统部署的敏感性,采取保守策略,即允许较高的误报率(False Positives,FP)而不是漏报率(False Negatives,FN)是一种常见的做法。例如,在银行账户交易中,宁可保守地阻止任何异常的高额收支,然后通过与客户确认来解决问题,也比被诈骗要好得多。
ABOD技术原理
ABOD技术基于在多变量特征空间中观察任意三个数据点所形成的角度。异常点和正常点的角度包络幅度的方差是不同的。通常,正常点的观察方差比异常点的方差要高,因
订阅专栏 解锁全文
70

被折叠的 条评论
为什么被折叠?



