递归---算法

本文介绍了递归算法的概念,强调其特点包括必须有明确的递归出口,以及递归可能导致的栈溢出问题。通过斐波那契数列和数的计算示例,展示了如何使用递归解决问题和处理复杂逻辑。
摘要由CSDN通过智能技术生成

1、概念

        在数学与计算机科学中,是指在方法的定义中使用方法自身。递归算法是一种直接或者间接调用自身方法的算法,即在定义自身的同时又出现自身的直接或间接调用。

特点:

  1. 递归就是方法里调用自身。
  2. 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
  3. 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
  4. 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。

注意:递归必须要有一个退出条件

//n的阶乘    
    public void digui(int n){
        if(n == 1){
            return 1;
        }
        return n*digui(n-1);
    }




递归方法名(参数){
    if(判断是否到达出口){
        return;//结束递归
    }
    调用自身(参数);//递归逻辑
    return;
}

总结:

  1. 找到一种划分的方法
  2. 找到递推公式或者等价转换,这些都是父问题转化为求解子问题
  3. 找变化的量:变化的通常要作为参数找出口

例题---斐波那契数列

        斐波那契数列的定义为F(n)=F(n-1)+F(n-2),同时F1=1,F2=1。请你输出数列的第n个数的对1e9+7取模的值。

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        System.out.println(f(n));
    }
    public static long f(int n){
        if(n == 1 || n == 2){
            return 1;
        }
        long res = f(n-1) + f(n-2);
        res %= (long)1e9+7;
        return res;
    }

例题---数的计算

        输入一个自然数n(n<=1000),我们对此自然数按照如下方法进行处理:

  1. 不做任何处理;
  2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半;
  3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止。

输入描述:输入一个正整数n

输出描述:输出一个整数,表示答案。

示例:6

           6

import java.util.Scanner;


public class Main {
   static int ans = 1;
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        f(n);
        System.out.println(ans);
    }
    public static void f(int n){
        if(n == 1){
            return;
        }
        for (int i = 1; i <= n/2; i++) {
            f(i);
            ans++;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂小羊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值