近世代数(群、环、域)

简介

近世代数简而言之就是群、环、域的故事,不同的约束条件早就不同的精彩世界。

群、环、与的定义都是基于集合的,通过对集合运算的约束,将集合构造成具有不同性质得新对象。

定义

设三元组 ( G , ⋅ , 1 ) (G,\cdot,1) (G,,1) G G G为集合, . . .为集合 G G G上一种二元运算,1为 G G G中的一个元。

( G , ⋅ , 1 ) (G,\cdot,1) (G,,1)满足:

∙ \bullet G 1 G1 G1(乘法结合律): a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a\cdot(b\cdot c)=(a\cdot b)\cdot c a(bc)=(ab)c a , b , c ∈ G a,b,c\in G a,b,cG

∙ \bullet G 2 G2 G2(单位元): 1 ⋅ a = a ⋅ 1 = a 1\cdot a=a\cdot 1=a 1a=a1=a, a ∈ G a\in G aG

∙ \bullet G 3 G3 G3(逆元):若 a ∈ G a\in G aG,有 a ′ ∈ G a^{'}\in G aG使得 a ⋅ a ′ = a ⋅ a ′ = 1 a\cdot a^{'}=a\cdot a^{'}=1 aa=aa=1.

则称 ( G , ⋅ , 1 ) (G,\cdot,1) (G,,1)为群,简称群 G G G,1成为群 G G G的单位元, a ′ a^{'} a成为 a a a的逆元。

若群 G G G还满足 G 4 G4 G4(交换律): a ⋅ b = b ⋅ a , a , b ∈ G a\cdot b=b\cdot a,a,b\in G ab=ba,a,bG,则称 G G G交换群.

若群 G G G只满足 G 1 , G 2 G1,G2 G1,G2,则称 G G G有单位元的半群.

若群 G G G满足 G 1 , G 2 , G 4 G1,G2,G4 G1,G2,G4,则称 G G G有单位元的交换半群.

例:设 ( Z , + , 0 ) (Z,+,0) (Z,+,0) Z Z Z为整数集, + + +为整数中的加法,0为整数零,易验证:

∙ \bullet ( Z , + , 0 ) (Z,+,0) (Z,+,0)中有 a + ( b + c ) = ( a + b ) + c a+(b+c)=(a+b)+c a+(b+c)=(a+b)+c,故 G 1 G1 G1成立;

∙ \bullet a + 0 = 0 + a = a a+0=0+a=a a+0=0+a=a,故 G 2 G2 G2成立,

∙ \bullet a + ( − a ) = ( − a ) + a = 0 a+(-a)=(-a)+a=0 a+(a)=(a)+a=0,故 G 3 G3 G3成立,

∙ \bullet a + b = b + a a+b=b+a a+b=b+a,故 G 4 G4 G4成立,

从而 Z Z Z是一个交换群。

子群

( G , ⋅ , 1 ) (G,\cdot,1) (G,,1)为群, A A A G G G的子集合。若 1 ∈ A 1\in A 1A ( A , ⋅ , 1 ) (A,\cdot,1) (A,,1)构成群,则 A A A称为 G G G的子群。并记为 A ⩽ G A\leqslant G AG.

循环群

若群 G G G中的每一个元都能表示成一个元素 a a a的幂次,则 G G G称为由 a a a生成的循环群,记作 G = < a > G=<a> G=<a>, a a a称为循环群 G G G生成元.

根据元素的的性质,循环群 G = < a > G=<a> G=<a>共有两种类型:

∙ \bullet 当生成元 a a a无限阶元素时,则 G G G称为无限阶循环群

∙ \bullet 如果** a a a的阶为 n n n,即 a n = 1 a^{n}=1 an=1,那么这时 G = < a > = < 1 , a 2 , . . . , a n − 1 > G=<a>=<1,a^{2},...,a^{n-1}> G=<a>=<1,a2,...,an1>,则 G G G称为由 a a a所生成的 n n n阶循环群**,注意 1 , a , a 2 , . . . , a n − 1 1,a,a^{2},...,a^{n-1} 1,a,a2,...,an1两两不同。

定义

五元组 ( R , + , ⋅ , 0 , 1 ) (R,+,\cdot,0,1) (R,+,,0,1) R R R是一个集合 + + + ⋅ \cdot 是集合 R R R上的二元运算,0和1是 R R R中的

( R , + , ⋅ , 0 , 1 ) (R,+,\cdot,0,1) (R,+,,0,1)满足:

∙ \bullet R 1 R1 R1(加法交换群): ( R , + , 0 ) (R,+,0) (R,+,0)交换群.

∙ \bullet R 2 R2 R2(乘法半群): ( R , ⋅ , 1 ) (R,\cdot,1) (R,,1)是有单位元的半群.

∙ \bullet R 3 R3 R3(乘法对加法的分配律): a ⋅ ( b + c ) = a ⋅ b + a ⋅ c , ( b + c ) ⋅ a = b ⋅ a + c ⋅ a , a , b , c ∈ R a\cdot (b+c)=a\cdot b+a\cdot c,(b+c)\cdot a=b\cdot a+c\cdot a,a,b,c\in R a(b+c)=ab+ac,(b+c)a=ba+ca,a,b,cR.

则称 ( R , + , ⋅ , 0 , 1 ) (R,+,\cdot,0,1) (R,+,,0,1),简称环 R R R.

其中, ∙ \bullet + + + ⋅ \cdot 称为环 R R R的加法和乘法.

∙ \bullet 1称为环的单位元.

∙ \bullet 0称为环的零元.

∙ \bullet a ′ ′ ∈ R a^{''}\in R aR使 a ′ ′ ⋅ a = 1 a^{''}\cdot a = 1 aa=1,则称 a ′ ′ a^{''} a a a a的逆元,写成 a − 1 a^{-1} a1.

∙ \bullet a ′ ∈ R a^{'}\in R aR使 a + a ′ = 0 a+a^{'}=0 a+a=0,则称 a ′ a^{'} a a a a的负元,写成 − a -a a.

∙ \bullet ( R , + , 0 ) (R,+,0) (R,+,0)称为环 R R R的加法群.

∙ \bullet ( R , ⋅ , 1 ) (R,\cdot,1) (R,,1)称为环 R R R的乘法半群.

若环 ( R , + , ⋅ , 0 , 1 ) (R,+,\cdot,0,1) (R,+,,0,1)满足

∙ \bullet R 4 R4 R4(乘法交换半群): ( R , ⋅ , 1 ) (R,\cdot,1) (R,,1)为交换半群.

则称 R R R交换环.

例子:整数集合 Z Z Z在整数 + + +和整数 ⋅ \cdot 下为交换环,简记环 Z Z Z.

证明:

∙ \bullet ( Z , + , 0 ) (Z,+,0) (Z,+0)是交换群.

∙ \bullet ( Z , ⋅ , 1 ) (Z,\cdot,1) (Z,,1)是有单位元的乘法交换半群.(乘法的逆元是整数分之1,是一个小数,所以不满足 G 3 G3 G3

∙ \bullet 满足乘法对加法的分配律.

整环

a , b ∈ R a,b\in R a,bR,且 a ! = 0 , b ! = 0 a!=0,b!=0 a!=0,b!=0,若 a ⋅ b = 0 a\cdot b=0 ab=0,则称 a a a b b b为环 R R R中的零因子.

R R R中无零因子,则称 R R R为无零因子环。交换的无零因子环称为整环.

例:在环 Z 26 Z_{26} Z26中13和2是零因子。

理想

I I I是环 R R R加法群子群,且对 a ∈ I a\in I aI r ∈ R r\in R rR a r ∈ I ar\in I arI r a ∈ I ra\in I raI,则称 I I I为环 R R R的理想.

主理想

I I I交换环 R R R的理想。若 I = r a ∣ r ∈ R I={ra|r\in R} I=rarR,则称 I I I为环 R R R的主理想,并记为 I = ( a ) I=(a) I=(a).

例:在整数环 ( Z , + , ⋅ , 0 , 1 ) (Z,+,\cdot,0,1) (Z,+,,0,1)中,令 n Z = 0 , ± n , ± 2 n , . . . nZ={0,\pm n,\pm 2n,...} nZ=0,±n,±2n,...,则 n Z nZ nZ为环 Z Z Z的理想,且 n Z nZ nZ为环 Z Z Z的主理想,此时 n Z = ( n ) nZ=(n) nZ=(n).

多项式环

x x x为文字, R R R为交换环, x ∉ R x\notin R x/R.定义 R R R上的多项式集

R [ x ] = f ( x ) = ∑ i = 0 n a i x i ∣ n ∈ Z , a i ∈ R R[x]={f(x)=\sum_{i=0}^{n}a_{i}x^{i}|n\in Z,a_{i}\in R} R[x]=f(x)=i=0naixinZ,aiR

∙ \bullet f ( x ) = ∑ i = 0 n a i x i f(x)=\sum_{i=0}^{n}a_{i}x^{i} f(x)=i=0naixi称为交换环 R R R上关于文字 x x x的多项式;

∙ \bullet a i x i a_{i}x^{i} aixi称为 f ( x ) f(x) f(x)的第 i i i次项, a i a_{i} ai f ( x ) f(x) f(x)的第 i i i次项系数; a 0 x 0 = a 0 a_{0}x^{0}=a_{0} a0x0=a0.

∙ \bullet a n ! = 0 a_{n}!=0 an!=0时, a n x n a_{n}x^{n} anxn称为 f ( x ) f(x) f(x)的首项, n n n称为 f ( x ) f(x) f(x)的次数,记为 ∂ f ( x ) = n \partial f(x)=n f(x)=n;特别当 a n = 1 a_{n}=1 an=1时,称 f ( x ) f(x) f(x)为首1多项式.

∙ \bullet 0 ∈ R 0\in R 0R R [ x ] R[x] R[x]中的零多项式,并约定$\partial (0)=-\infty , 任 意 非 负 整 数 ,任意非负整数 ,n , , n+(-\infty )=-\infty $.

多项式环的加法和乘法

R R R为交换环,五元组 ( R [ x ] , + , ⋅ , 0 , 1 ) (R[x],+,\cdot,0,1) (R[x],+,,0,1)称为 R R R上的多项式环,其中 + + + ⋅ \cdot 如下述定义:

​ 设 f ( x ) = ∑ i = 0 n a i x i , g ( x ) = ∑ i = 0 m b j x j f(x)=\sum_{i=0}^{n}a_{i}x^{i},g(x)=\sum_{i=0}^{m}b_{j}x^{j} f(x)=i=0naixi,g(x)=i=0mbjxj,定义

f ( x ) + g ( x ) = ∑ i = 0 m a x ( m , n ) ( a i + b i ) x i f(x)+g(x)=\sum_{i=0}^{max(m,n)}(a_{i}+b_{i})x^{i} f(x)+g(x)=i=0max(m,n)(ai+bi)xi

f ( x ) ⋅ g ( x ) = ∑ k = 0 m + n ( ∑ i + j = k a i b j ) x k f(x)\cdot g(x)=\sum_{k=0}^{m+n}(\sum_{i+j=k}a_{i}b_{j})x^{k} f(x)g(x)=k=0m+n(i+j=kaibj)xk

定义及实例

五元组 ( F , + , ⋅ , 0 , 1 ) (F,+,\cdot,0,1) (F,+,,0,1) F F F是一个集合 + + + ⋅ \cdot 是集合 F F F上的二元运算,0和1是 F F F中的

( F , + , ⋅ , 0 , 1 ) (F,+,\cdot,0,1) (F,+,,0,1)满足:

∙ \bullet F 1 F1 F1(加法交换群): ( F , + , 0 ) (F,+,0) (F,+,0)交换群.

∙ \bullet F 2 F2 F2(乘法交换群): ( F ∗ , ⋅ , 1 ) (F^{*},\cdot,1) (F,,1)是有交换群,这里 F ∗ = F − 0 F^{*}=F-0 F=F0.

∙ \bullet F 3 F3 F3(乘法对加法的分配律): a ⋅ ( b + c ) = a ⋅ b + a ⋅ c , ( b + c ) ⋅ a = b ⋅ a + c ⋅ a , a , b , c ∈ R a\cdot (b+c)=a\cdot b+a\cdot c,(b+c)\cdot a=b\cdot a+c\cdot a,a,b,c\in R a(b+c)=ab+ac,(b+c)a=ba+ca,a,b,cR.

则称 ( F , + , ⋅ , 0 , 1 ) (F,+,\cdot,0,1) (F,+,,0,1),简称域 F F F.

例:五元组 ( R , + , ⋅ , 0 , 1 ) (R,+,\cdot,0,1) (R,+,,0,1)中, R R R为实数集,0和1为实数0和1, + + + ⋅ \cdot 是实数的 + + + ⋅ \cdot ( R , + , ⋅ , 0 , 1 ) (R,+,\cdot,0,1) (R,+,,0,1)满足域的定义,简称实数域 R R R

Galois域

F F F是一个域,如果 F F F含有无限多个元素,则称 F F F无限域。相反,如果 F F F含有有限个元素,则称为有限域或 G a l o i s Galois Galois,并把 F F F元素的个数称为 F F F。若 F F F含有 q q q个元素,可简记为 G F ( q ) GF(q) GF(q)

域的基本性质

F F F是一个域,那么在 F F F中下列运算规则成立:

∙ \bullet 加法消去律:设 a , b , c ∈ F a,b,c\in F a,b,cF,如果 a + c = b + c a+c=b+c a+c=b+c,则一定有 a = b a=b a=b

∙ \bullet 乘法消去律:设 a , b , c ∈ F a,b,c\in F a,b,cF,且 c ! = 0 c!=0 c!=0,如果 a ⋅ c = b ⋅ c a\cdot c=b\cdot c ac=bc,则一定有 a = b a=b a=b

∙ \bullet 对任意的 a ∈ F a\in F aF,都有 − ( − a ) = a -(-a)=a (a)=a

∙ \bullet 对任意的 a ∈ F a\in F aF,都有 ( a − 1 ) − 1 = a (a^{-1})^{-1}=a (a1)1=a

∙ \bullet 对任意的 a ∈ F a\in F aF,都有 a ⋅ 0 = 0 a\cdot 0=0 a0=0

∙ \bullet 对于任意的 a , b ∈ F a,b\in F a,bF,若 a ⋅ b = 0 a\cdot b=0 ab=0,则一定有 a = 0 a=0 a=0 b = 0 b=0 b=0

∙ \bullet 对于任意的 a , b ∈ F a,b\in F a,bF,都有 − ( a + b ) = ( − a ) + ( − b ) -(a+b)=(-a)+(-b) (a+b)=(a)+(b)

∙ \bullet 对于任意的 a , b ∈ F a,b\in F a,bF,都有 a ⋅ ( − b ) = ( − a ) ⋅ b = − a ⋅ b a\cdot (-b)=(-a)\cdot b=-a\cdot b a(b)=(a)b=ab

∙ \bullet 对于任意的 a , b ∈ F a,b\in F a,bF,都有 ( − a ) ⋅ ( − b ) = a ⋅ b (-a)\cdot (-b)=a\cdot b (a)(b)=ab

∙ \bullet 对于任意的 a , b ∈ F a,b\in F a,bF,且 a ! = 0 , b ! = 0 a!=0,b!=0 a!=0,b!=0,都有 ( a ⋅ b ) − 1 = a − 1 ⋅ b − 1 (a\cdot b)^{-1}=a^{-1}\cdot b^{-1} (ab)1=a1b1

∙ \bullet 对于任意的 a ∈ F a\in F aF,且 a ! = 0 a!=0 a!=0,都有 ( − a ) − 1 = − a − 1 (-a)^{-1}=-a^{-1} (a)1=a1

域上的多项式

带余除法(定理)

f ( x ) f(x) f(x) g ( x ) g(x) g(x) F ( x ) F(x) F(x)中的多项式,且 g ( x ) ! = 0 g(x)!=0 g(x)!=0,则存在惟一的两个多项式 q ( x ) q(x) q(x) r ( x ) r(x) r(x),使得

f ( x ) = q ( x ) g ( x ) + r ( x ) , ∂ r ( x ) < ∂ g ( x ) f(x)=q(x)g(x)+r(x),\partial r(x)<\partial g(x) f(x)=q(x)g(x)+r(x),r(x)<g(x)

其中, f ( x ) f(x) f(x)为被除式, g ( x ) g(x) g(x)为除式, q ( x ) q(x) q(x)为商式, r ( x ) r(x) r(x)为余式。

r ( x ) = 0 r(x)=0 r(x)=0,则称 g ( x ) g(x) g(x) f ( x ) f(x) f(x)的因式,或称 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的倍数,还称 f ( x ) f(x) f(x)能被 g ( x ) g(x) g(x)整除,记作 g ( x ) ∣ f ( x ) g(x)|f(x) g(x)f(x).

公因式

∙ \bullet f ( x ) , g ( x ) , q ( x ) f(x),g(x),q(x) f(x),g(x),q(x) F ( x ) F(x) F(x)的多项式,且 q ( x ) ! = 0 q(x)!=0 q(x)!=0。如果 q ( x ) q(x) q(x)既是 f ( x ) f(x) f(x)的因式,也是 g ( x ) g(x) g(x)的因式,则称 q ( x ) q(x) q(x) f ( x ) f(x) f(x) g ( x ) g(x) g(x)公因式

∙ \bullet 如果 f ( x ) f(x) f(x) g ( x ) g(x) g(x)不全为0,则 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的公因式中次数最高的首1多项式称为 f ( x ) f(x) f(x) g ( x ) g(x) g(x)最高公因式

∙ \bullet 如果 ( f ( x ) , g ( x ) ) = 1 (f(x),g(x))=1 (f(x),g(x))=1,则称 f ( x ) f(x) f(x) g ( x ) g(x) g(x)互素。

公倍式

∙ \bullet f ( x ) , g ( x ) , q ( x ) f(x),g(x),q(x) f(x),g(x),q(x) F ( x ) F(x) F(x)的多项式,且 q ( x ) ! = 0 q(x)!=0 q(x)!=0。如果 q ( x ) q(x) q(x)既是 f ( x ) f(x) f(x)的倍式,也是 g ( x ) g(x) g(x)的倍式,则称 q ( x ) q(x) q(x) f ( x ) f(x) f(x) g ( x ) g(x) g(x)公倍式

∙ \bullet 如果 f ( x ) f(x) f(x) g ( x ) g(x) g(x)不全为0,则 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的公因式中次数最低的首1多项式称为 f ( x ) f(x) f(x) g ( x ) g(x) g(x)最低公倍式,记作 [ f ( x ) , g ( x ) ] [f(x),g(x)] [f(x),g(x)]

引理

f ( x ) 、 g ( x ) 、 q ( x ) 、 r ( x ) f(x)、g(x)、q(x)、r(x) f(x)g(x)q(x)r(x) F [ X ] F[X] F[X]中的多项式,

f ( x ) = q ( x ) g ( x ) + r ( x ) f(x)=q(x)g(x)+r(x) f(x)=q(x)g(x)+r(x),则

( f ( x ) , g ( x ) ) = ( g ( x ) , r ( x ) ) (f(x),g(x))=(g(x),r(x)) (f(x),g(x))=(g(x),r(x))

定理

f ( x ) f(x) f(x) g ( x ) g(x) g(x) F [ x ] F[x] F[x]中不等于0的多项式,则必存在 F [ x ] F[x] F[x]中的两个多项式 a ( x ) a(x) a(x) b ( x ) b(x) b(x),使得,

( f ( x ) , g ( x ) ) = a ( x ) f ( x ) + b ( x ) g ( x ) (f(x),g(x))=a(x)f(x)+b(x)g(x) (f(x),g(x))=a(x)f(x)+b(x)g(x)

既约多项式、可约多项式

f ( x ) f(x) f(x) F [ x ] F[x] F[x]中的一个多项式,且 ∂ f ( x ) > 1 \partial f(x)>1 f(x)>1。如果 f ( x ) f(x) f(x)的因式只有常数 c ( c ! = 0 ) c(c!=0) c(c!=0) c f ( x ) cf(x) cf(x),则称 f ( x ) f(x) f(x)为域 F F F上的不可约多项式既约多项式。否则,称 f ( x ) f(x) f(x)是域 F F F上的可约多项式

注意:多项式的可约性和所在域 F F F密切相关

例:多项式 x 2 + 1 x^{2}+1 x2+1在有理数域 Q Q Q和实数域 R R R中都是既约的,但在复数域 C C C中却是可约的,即 x 2 + 1 = ( x + i ) ( x − i ) x^{2}+1=(x+i)(x-i) x2+1=(x+i)(xi)

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值