强化学习入门:用 Q -Learning实现格子游戏 Cliff Walking(附代码讲解)

强化学习(Reinforcement Learning)是机器学习中的重要分支之一,它通过“试错”机制使智能体学习如何在环境中做出最优决策。本文将通过一个经典的 Cliff Walking(悬崖漫步) 环境,手把手带你实现并理解 Q-Learning 算法的基本原理和应用。并在总结附上源代码。


 一、什么是 Q-Learning?

Q-learning 是一种基于值的强化学习算法。它的目标是学习一个 Q 表(Q-table),每个状态-动作对(state-action pair)都有一个 Q 值,用来表示该动作在该状态下能获得的期望回报。

更新公式如下:

Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]

  • s,a:当前状态与动作

  • r:环境给出的即时奖励

  • s′:执行动作后到达的新状态

  • α:学习率

  • γ:折扣因子


 二、环境设计:Cliff Walking(悬崖漫步)

 环境规则

  • 一个 4 行 × 12 列 的网格。

  • 起点在 (0,3),终点在 (11,3)

  • (1~10, 3) 是“悬崖”,掉下去会得到 -100 奖励并重新开始。

  • 其余位置每一步都是 -1 奖励。

class CliffWalkingEnv:
    def __init__(self, ncol, nrow):
        self.nrow = nrow
        self.ncol = ncol
        self.x = 0  # 记录当前智能体位置的横坐标
        self.y = self.nrow - 1  # 记录当前智能体位置的纵坐标

    def step(self, action):  # 外部调用这个函数来改变当前位置
        # 4种动作, change[0]:上, change[1]:下, change[2]:左, change[3]:右。坐标系原点(0,0)
        # 定义在左上角
        change = [[0, -1], [0, 1], [-1, 0], [1, 0]]
        self.x = min(self.ncol - 1, max(0, self.x + change[action][0]))
        self.y = min(self.nrow - 1, max(0, self.y + change[action][1]))
        next_state = self.y * self.ncol + self.x
        reward = -1
        done = False
        if self.y == self.nrow - 1 and self.x > 0:  # 下一个位置在悬崖或者目标
            done = True
            if self.x != self.ncol - 1:
                reward = -100
        return next_state, reward, done

    def reset(self):  # 回归初始状态,坐标轴原点在左上角
        self.x = 0
        self.y = self.nrow - 1
        return self.y * self.ncol + self.x

智能体的动作空间:

  • 上(0)下(1)左(2)右(3)

动作会使坐标发生如下变化:

change = [[0, -1], [0, 1], [-1, 0], [1, 0]]

 三、Q-learning 智能体设计

class QLearning:
    """ Q-learning算法 """
    def __init__(self, ncol, nrow, epsilon, alpha, gamma, n_action=4):
        self.Q_table = np.zeros([nrow * ncol, n_action])  # 初始化Q(s,a)表格
        self.n_action = n_action  # 动作个数
        self.alpha = alpha  # 学习率
        self.gamma = gamma  # 折扣因子
        self.epsilon = epsilon  # epsilon-贪婪策略中的参数

    def take_action(self, state):  #选取下一步的操作
        if np.random.random() < self.epsilon:
            action = np.random.randint(self.n_action)
        else:
            action = np.argmax(self.Q_table[state])
        return action

    def best_action(self, state):  # 用于打印策略
        Q_max = np.max(self.Q_table[state])
        a = [0 for _ in range(self.n_action)]
        for i in range(self.n_action):
            if self.Q_table[state, i] == Q_max:
                a[i] = 1
        return a

    def update(self, s0, a0, r, s1):
        td_error = r + self.gamma * self.Q_table[s1].max(
        ) - self.Q_table[s0, a0]
        self.Q_table[s0, a0] += self.alpha * td_error

核心方法说明:

  • take_action: ε-贪婪策略(探索 vs 利用)

  • update: 使用 Q-learning 更新公式

  • best_action: 输出当前状态下的最优动作(用于策略可视化)


 四、训练智能体

设置训练参数:

ncol = 12
nrow = 4
env = CliffWalkingEnv(ncol, nrow)
np.random.seed(0)
epsilon = 0.1
alpha = 0.1
gamma = 0.9
agent = QLearning(ncol, nrow, epsilon, alpha, gamma)
num_episodes = 500  # 智能体在环境中运行的序列的数量

循环训练 500 个回合,记录每轮回报:

return_list = []  # 记录每一条序列的回报
for i in range(10):  # 显示10个进度条
    # tqdm的进度条功能
    with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
        for i_episode in range(int(num_episodes / 10)):  # 每个进度条的序列数
            episode_return = 0
            state = env.reset()
            done = False
            while not done:
                action = agent.take_action(state)
                next_state, reward, done = env.step(action)
                episode_return += reward  # 这里回报的计算不进行折扣因子衰减
                agent.update(state, action, reward, next_state)
                state = next_state
            return_list.append(episode_return)
            if (i_episode + 1) % 10 == 0:  # 每10条序列打印一下这10条序列的平均回报
                pbar.set_postfix({
                    'episode':
                    '%d' % (num_episodes / 10 * i + i_episode + 1),
                    'return':
                    '%.3f' % np.mean(return_list[-10:])
                })
            pbar.update(1)

 五、结果可视化

我们记录每一轮的总回报并绘制如下:


 六、策略输出示例

action_meaning = ['^', 'v', '<', '>']
print('Q-learning算法最终收敛得到的策略为:')
print_agent(agent, env, action_meaning, list(range(37, 47)), [47])

输出的策略图中:

  • ^v<> 表示可能选择的动作方向

  • **** 表示悬崖

  • EEEE 表示终点

示例输出:

Q-learning算法最终收敛得到的策略为:
^ooo ovoo ovoo ^ooo ^ooo ovoo ooo> ^ooo ^ooo ooo> ooo> ovoo 
ooo> ooo> ooo> ooo> ooo> ooo> ^ooo ooo> ooo> ooo> ooo> ovoo 
ooo> ooo> ooo> ooo> ooo> ooo> ooo> ooo> ooo> ooo> ooo> ovoo 
^ooo **** **** **** **** **** **** **** **** **** **** EEEE 

 七、总结

完整代码:

import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm  # tqdm是显示循环进度条的库


class CliffWalkingEnv:
    def __init__(self, ncol, nrow):
        self.nrow = nrow
        self.ncol = ncol
        self.x = 0  # 记录当前智能体位置的横坐标
        self.y = self.nrow - 1  # 记录当前智能体位置的纵坐标

    def step(self, action):  # 外部调用这个函数来改变当前位置
        # 4种动作, change[0]:上, change[1]:下, change[2]:左, change[3]:右。坐标系原点(0,0)
        # 定义在左上角
        change = [[0, -1], [0, 1], [-1, 0], [1, 0]]
        self.x = min(self.ncol - 1, max(0, self.x + change[action][0]))
        self.y = min(self.nrow - 1, max(0, self.y + change[action][1]))
        next_state = self.y * self.ncol + self.x
        reward = -1
        done = False
        if self.y == self.nrow - 1 and self.x > 0:  # 下一个位置在悬崖或者目标
            done = True
            if self.x != self.ncol - 1:
                reward = -100
        return next_state, reward, done

    def reset(self):  # 回归初始状态,坐标轴原点在左上角
        self.x = 0
        self.y = self.nrow - 1
        return self.y * self.ncol + self.x



class QLearning:
    """ Q-learning算法 """
    def __init__(self, ncol, nrow, epsilon, alpha, gamma, n_action=4):
        self.Q_table = np.zeros([nrow * ncol, n_action])  # 初始化Q(s,a)表格
        self.n_action = n_action  # 动作个数
        self.alpha = alpha  # 学习率
        self.gamma = gamma  # 折扣因子
        self.epsilon = epsilon  # epsilon-贪婪策略中的参数

    def take_action(self, state):  #选取下一步的操作
        if np.random.random() < self.epsilon:
            action = np.random.randint(self.n_action)
        else:
            action = np.argmax(self.Q_table[state])
        return action

    def best_action(self, state):  # 用于打印策略
        Q_max = np.max(self.Q_table[state])
        a = [0 for _ in range(self.n_action)]
        for i in range(self.n_action):
            if self.Q_table[state, i] == Q_max:
                a[i] = 1
        return a

    def update(self, s0, a0, r, s1):
        td_error = r + self.gamma * self.Q_table[s1].max(
        ) - self.Q_table[s0, a0]
        self.Q_table[s0, a0] += self.alpha * td_error




def print_agent(agent, env, action_meaning, disaster=[], end=[]):
    for i in range(env.nrow):
        for j in range(env.ncol):
            if (i * env.ncol + j) in disaster:
                print('****', end=' ')
            elif (i * env.ncol + j) in end:
                print('EEEE', end=' ')
            else:
                a = agent.best_action(i * env.ncol + j)
                pi_str = ''
                for k in range(len(action_meaning)):
                    pi_str += action_meaning[k] if a[k] > 0 else 'o'
                print(pi_str, end=' ')
        print()



ncol = 12
nrow = 4
env = CliffWalkingEnv(ncol, nrow)
np.random.seed(0)
epsilon = 0.1
alpha = 0.1
gamma = 0.9
agent = QLearning(ncol, nrow, epsilon, alpha, gamma)
num_episodes = 500  # 智能体在环境中运行的序列的数量

return_list = []  # 记录每一条序列的回报
for i in range(10):  # 显示10个进度条
    # tqdm的进度条功能
    with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
        for i_episode in range(int(num_episodes / 10)):  # 每个进度条的序列数
            episode_return = 0
            state = env.reset()
            done = False
            while not done:
                action = agent.take_action(state)
                next_state, reward, done = env.step(action)
                episode_return += reward  # 这里回报的计算不进行折扣因子衰减
                agent.update(state, action, reward, next_state)
                state = next_state
            return_list.append(episode_return)
            if (i_episode + 1) % 10 == 0:  # 每10条序列打印一下这10条序列的平均回报
                pbar.set_postfix({
                    'episode':
                    '%d' % (num_episodes / 10 * i + i_episode + 1),
                    'return':
                    '%.3f' % np.mean(return_list[-10:])
                })
            pbar.update(1)

episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('Q-learning on {}'.format('Cliff Walking'))
plt.show()

action_meaning = ['^', 'v', '<', '>']
print('Q-learning算法最终收敛得到的策略为:')
print_agent(agent, env, action_meaning, list(range(37, 47)), [47])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值