Spark大数据技术第一章测验
1、Spark的构架设计,它分为4个组成部分,分别为Cluster Manager、Worker、Executor、Driver API。
True
False
2、Spark 哪个模式利用的Hadoop 的资源管理器
standalone
spark on mesos
spark on YARN
Spark on local
3、Spark2.X新特征简单讲述三方面,分别为
精简的API
Spark作为编译器
智能优化
Spark Core 的优化
4、Spark要比Hadoop快 10x-100x。
True
False
5、Spark Core提供Spark最基础与最核心的功能,它的子框架包括Spark SQL,Spark Streaming,MLlib和GraphX。
True
False
6、本章涉及的Spark与Hadoop的区别为
解决方式不同
两者可合可分
应用场景不同
特点不同
7、Stage 的 Task 的数量由什么决定
Partition
Job
Stage
TaskScheduler
8、Spark支持多种资源管理器。
True
False
9、Task 运行在下列哪个选项中Executor上的工作单元
Driver program
spark master
worker node
Cluster manager
10、Spark Core包括什么
Hash
Mllib
SparkContext
Spark SQL
11、Spark则是一个专门的,用来对那些分布式存储的大数据进行处理的工具,它会进行分布式数据的存储。
True
False
12、Spark特点包括
迅速
大量
稳健
易用
13、Spark SQL是Spark用来操作非结构化数据的组件
True
False
14、MapReduce上的不同作业在同一个节点运行时,会各自启动一个JVM(Java虚拟机)。而Spark同一节点的所有任务都可以在一个JVM上运行。
True
False
15、Spark的四大特点有什么
迅速
通用
通用
支持多种资源管理器
简单
16、Spark 2.0搭载了第二代Tungsten引擎。
True
False
17、Spark在2010年由Matei Zaharia在加州大学伯克利分校的AMPLab
True
False
18、Spark能够帮助我们处理那些需要处理大量实时或压缩数据的计算密集型的任务和挑战。
True
False
19、MLlib是Spark提供的一个机器学习算法库。
True
False
20、本章所涉及的Spark主要特点有几个
3
4
5
6