Spark大数据技术第一章测验

本文概述了Spark的大数据处理架构,包括其组成部分如ClusterManager等,讲述了Spark与Hadoop的区别,强调了Spark的快速性能、新特性和组件如SparkSQL、MLlib。还提到了Spark在资源管理和任务执行方面的优势。
摘要由CSDN通过智能技术生成

Spark大数据技术第一章测验 

 1、Spark的构架设计,它分为4个组成部分,分别为Cluster Manager、Worker、Executor、Driver API。

  True

  False

 2、Spark 哪个模式利用的Hadoop 的资源管理器

  standalone

  spark on mesos

  spark on YARN

  Spark on local  

 3、Spark2.X新特征简单讲述三方面,分别为

  精简的API

  Spark作为编译器

  智能优化

  Spark Core 的优化  

 4、Spark要比Hadoop快 10x-100x。

  True

  False

 5、Spark Core提供Spark最基础与最核心的功能,它的子框架包括Spark SQL,Spark Streaming,MLlib和GraphX。

  True

  False

 6、本章涉及的Spark与Hadoop的区别为

  解决方式不同

  两者可合可分

  应用场景不同

  特点不同

 7、Stage 的 Task 的数量由什么决定

  Partition

  Job

  Stage

  TaskScheduler  

 8、Spark支持多种资源管理器。

  True

  False

 9、Task 运行在下列哪个选项中Executor上的工作单元

  Driver program

  spark master

  worker node

  Cluster manager  

 10、Spark Core包括什么

  Hash

  Mllib

  SparkContext

  Spark SQL

 11、Spark则是一个专门的,用来对那些分布式存储的大数据进行处理的工具,它会进行分布式数据的存储。

  True

  False

 12、Spark特点包括

  迅速

  大量

  稳健

  易用

 13、Spark SQL是Spark用来操作非结构化数据的组件

  True

  False

 14、MapReduce上的不同作业在同一个节点运行时,会各自启动一个JVM(Java虚拟机)。而Spark同一节点的所有任务都可以在一个JVM上运行。

  True

  False  

 15、Spark的四大特点有什么

  迅速

  通用

  通用

  支持多种资源管理器

  简单

 16、Spark 2.0搭载了第二代Tungsten引擎。

  True

  False

 17、Spark在2010年由Matei Zaharia在加州大学伯克利分校的AMPLab

  True

  False

 18、Spark能够帮助我们处理那些需要处理大量实时或压缩数据的计算密集型的任务和挑战。

  True

  False

 19、MLlib是Spark提供的一个机器学习算法库。

  True

  False  

 20、本章所涉及的Spark主要特点有几个

  3

  4

  5

  6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值