Acwing——第二场热身赛

题目链接

AcWing 3547. 特殊数字
AcWing 3548. 双端队列
AcWing 3549. 最长非递减子序列

题目描述

3547.特殊数字

我们规定,对于一个整数 a,如果其各位数字相加之和能够被 4 整除,则称它是一个特殊数字。

现在,给定一个整数 n,请你计算并输出不小于 n 的最小特殊数字。

输入格式

一个整数 n。

输出格式

一个整数,表示不小于 n 的最小特殊数字。

数据范围

对于 30% 的数据, 1 ≤ n ≤ 100 1≤n≤100 1n100
对于 100% 的数据, 1 ≤ n ≤ 1000 1≤n≤1000 1n1000

输入样例:

42

输出样例:

44

  • 时间复杂度: O ( n ) O(n) O(n)

代码:

#include<iostream>
using namespace std;

//计算 x 的每一位数的和
int fun(int x){
    string s = to_string(x);
    int ans = 0;
    for(auto &c:s) ans += (c-'0');
    return ans;
}

int main(){
    //根据题意直接模拟即可
    int n;
    cin>>n;
    while(true){
        if(fun(n) % 4 == 0) break;
        n++;
    }
    cout<<n<<endl;
    return 0;
}

3548.双端队列

给定一个双端队列,初始时队列为空。

你要对其进行 q 次操作,每次操作可能是以下三种之一:

L x,从队列的左端插入整数 x。
R x,从队列的右端插入整数 x。
? x,请你计算为了使已经处于队列中的整数 x 位于队列的最左端或最右端,至少需要从最左端或最右端弹出多少个数字。
保证操作 3 一定合法( ? x 中的 x 一定已经处于队列之中)。

每个数字最多被插入到队列中 1 次(队列中一定不会存在重复数字)。

注意,操作 3 只是询问最少需要弹出多少数字,不是真的要弹出它们,队列中的数字始终不会减少。

输入格式

第一行包含整数 q。

接下来 q 行,每行包含一个操作信息,格式如题所述。

输出格式

对于每个操作 3,输出一行,一个整数表示结果。

数据范围

对于 30% 的数据, 1 ≤ q ≤ 30 , 1 ≤ x ≤ 30 1≤q≤30,1≤x≤30 1q30,1x30
对于 100% 的数据, 1 ≤ q ≤ 2 × 1 0 5 , 1 ≤ x ≤ 2 × 1 0 5 1≤q≤2×10^5,1≤x≤2×10^5 1q2×105,1x2×105
保证至少包含一个操作 3,
保证操作 1 和 2 不会重复插入数字。
保证操作 3 不会询问队列中不存在的数字。

输入样例1:

8
L 1
R 2
R 3
? 2
L 4
? 1
L 5
? 1

输出样例1:

1
1
2

输入样例2:

10
L 100
R 100000
R 123
L 101
? 123
L 10
R 115
? 100
R 110
? 115

输出样例2:

0
2
1

分析:
根据题意,我们只需要构建一个双向链表,可以在前面插入元素,也可以在后面插入元素。只需要遍历一遍链表找到对应的x的位置,要弹出左边元素的个数 与 要弹出右边元素的个数 取个min即可。

但实际上我们并不需要真正的模拟这个过程。我们只需要对相应的下标做操作即可。

在这里插入图片描述
在这里插入图片描述

  • 时间复杂度: O ( n ) O(n) O(n)

代码:

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 2e5+10;
int idx[N];

int main(){
    int q;
    cin>>q;
    int l = 0,r = -1;
    
    while(q--){
        char op[2];
        int x;
        scanf("%s%d",op,&x);
        if(*op == 'L'){
            idx[x] = --l;
        }
        else if(*op == 'R'){
            idx[x] = ++r;
        }
        else{
            cout<<min(idx[x] - l,r - idx[x])<<endl;
        }
    }
    return 0;
}

3549. 最长非递减子序列

给定一个长度为 n 的数字序列 a 1 , a 2 , … , a n a_1,a_2,…,a_n a1,a2,,an,序列中只包含数字 1 和 2。

现在,你要选取一个区间 [ l , r ] ( 1 ≤ l ≤ r ≤ n ) [l,r](1≤l≤r≤n) [l,r](1lrn),将 a l , a l + 1 , … , a r a_l,a_{l+1},…,a_r al,al+1,,ar进行翻转,并且使得到的新数字序列 a 的最长非递减子序列的长度尽可能长。

请问,这个最大可能长度是多少?

一个非递减子序列是指一个索引为 p 1 , p 2 , … , p k p_1,p_2,…,p_k p1,p2,,pk 的序列,满足 p 1 < p 2 < … < p k p_1<p_2<…<p_k p1<p2<<pk 并且 a p 1 ≤ a p 2 ≤ … ≤ a p k a_{p1}≤a_{p2}≤…≤a_{pk} ap1ap2apk,其长度为 k。

输入格式

第一行一个整数 n。

第二行 n 个空格隔开的数字 1 或 2,表示 a 1 , … , a n a_1,…,a_n a1,,an

输出格式

输出一个整数,表示得到的新数字序列 a 的最长非递减子序列的最大可能长度。

数据范围

对于 30% 的数据, 1 ≤ n ≤ 100 1≤n≤100 1n100
对于 100% 的数据, 1 ≤ n ≤ 1 0 6 1≤n≤10^6 1n106
本题读入数据规模较大,需注意优化读入。
C++ 尽量使用 scanf 读入,Java 尽量使用 BufferedReader 读入。

输入样例1:

4
1 2 1 2

输出样例1:

4

输入样例2:

10
1 1 2 2 2 1 1 2 2 1

输出样例2:

9

分析:

按照题意,我们翻转一个区间 [ l , r ] [ l , r ] [l,r]之后,将会得到最大的非递减上升子序列。那么其翻转之前的形式应该是如下的:

在这里插入图片描述
所以可能有四种合法情况:

  • 只有第一段存在,111111…,用 s1 记录第一种情况的长度
  • 第一段和第二段都存在,111111122222…,用 s2 记录第二种情况的长度
  • 前三段都存在,11111222211111,用 s3 记录第三种情况的长度
  • 四段全部存在,11111222211112222,用 s4 记录第四种情况的长度
  • 最后的答案即为 max{ s1,s2,s3,s4 }
  • 时间复杂度: O ( n ) O(n) O(n)

代码:

#include<iostream>
using namespace std;

int main(){
    int n ;
    cin>>n;
    int s1 = 0,s2 = 0,s3 = 0,s4 = 0;
    for(int i = 1;i <= n;i++){
        int x;
        scanf("%d",&x);
        //如果x = 1,有可能是加在 s1 后面,也有可能是加在 s3 后面
        //s1   111111....
        //s3   11111222211111...
        if(x == 1){
            s1++;
            //s3 此时的情况有可能是   1111122222 + 1 
            //也有可能是  1111122221111...  + 1
            //所以要取两者的最大值
            s3 = max(s3+1,s2+1);
        }
        //x = 2既有可能是加在 s2 后面,也有可能是加在 s4 后面
        //s2 111112222....
        //s4 11111222211112222....
        else{
            s2 = max(s1+1,s2+1);
            s4 = max(s3+1,s4+1);
        }
    }
    cout<<max(s3,s4)<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值