Leetcode.1298 你能从盒子里获得的最大糖果数

文章介绍了LeetCode的一道题目,1298号问题——你能从盒子里获得的最大糖果数。这个问题涉及到了深度优先搜索(DFS)和广度优先搜索(BFS)策略。给定一系列带钥匙和糖果的盒子,目标是计算能获取的最大糖果数。一个C++解决方案被提出,使用BFS遍历盒子,同时跟踪已打开的盒子和钥匙,逐步计算总糖果数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

Leetcode.1298 你能从盒子里获得的最大糖果数 rating : 1825

题目描述

给你 n n n 个盒子,每个盒子的格式为 [status, candies, keys, containedBoxes] ,其中:

  • 状态字 s t a t u s [ i ] status[i] status[i]:整数,如果 b o x [ i ] box[i] box[i] 是开的,那么是 1 1 1 ,否则是 0 0 0
  • 糖果数 c a n d i e s [ i ] candies[i] candies[i]: 整数,表示 b o x [ i ] box[i] box[i] 中糖果的数目。
  • 钥匙 k e y s [ i ] keys[i] keys[i]:数组,表示你打开 b o x [ i ] box[i] box[i] 后,可以得到一些盒子的钥匙,每个元素分别为该钥匙对应盒子的下标。
  • 内含的盒子 c o n t a i n e d B o x e s [ i ] containedBoxes[i] containedBoxes[i]:整数,表示放在 b o x [ i ] box[i] box[i] 里的盒子所对应的下标。
  • 给你一个 i n i t i a l B o x e s initialBoxes initialBoxes 数组,表示你现在得到的盒子,你可以获得里面的糖果,也可以用盒子里的钥匙打开新的盒子,还可以继续探索从这个盒子里找到的其他盒子。

请你按照上述规则,返回可以获得糖果的 最大数目

示例 1:

输入:status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
输出:16
解释:
一开始你有盒子 0 。你将获得它里面的 7 个糖果和盒子 1 和 2。
盒子 1 目前状态是关闭的,而且你还没有对应它的钥匙。所以你将会打开盒子 2 ,并得到里面的 4 个糖果和盒子 1 的钥匙。
在盒子 1 中,你会获得 5 个糖果和盒子 3 ,但是你没法获得盒子 3 的钥匙所以盒子 3 会保持关闭状态。
你总共可以获得的糖果数目 = 7 + 4 + 5 = 16 个。

示例 2:

输入:status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
输出:6
解释:
你一开始拥有盒子 0 。打开它你可以找到盒子 1,2,3,4,5 和它们对应的钥匙。
打开这些盒子,你将获得所有盒子的糖果,所以总糖果数为 6 个。

示例 3:

输入:status = [1,1,1], candies = [100,1,100], keys = [[],[0,2],[]], containedBoxes = [[],[],[]], initialBoxes = [1]
输出:1

示例 4:

输入:status = [1], candies = [100], keys = [[]], containedBoxes = [[]], initialBoxes = []
输出:0

示例 5:

输入:status = [1,1,1], candies = [2,3,2], keys = [[],[],[]], containedBoxes = [[],[],[]], initialBoxes = [2,1,0]
输出:7

提示:
  • 1 ≤ s t a t u s . l e n g t h ≤ 1000 1 \leq status.length \leq 1000 1status.length1000
  • s t a t u s . l e n g t h = c a n d i e s . l e n g t h = k e y s . l e n g t h = c o n t a i n e d B o x e s . l e n g t h = n status.length = candies.length = keys.length = containedBoxes.length = n status.length=candies.length=keys.length=containedBoxes.length=n
  • s t a t u s [ i ] status[i] status[i] 要么是 0 0 0 要么是 1 1 1
  • 1 ≤ c a n d i e s [ i ] ≤ 1000 1 \leq candies[i] \leq 1000 1candies[i]1000
  • 0 ≤ k e y s [ i ] . l e n g t h ≤ s t a t u s . l e n g t h 0 \leq keys[i].length \leq status.length 0keys[i].lengthstatus.length
  • 0 ≤ k e y s [ i ] [ j ] < s t a t u s . l e n g t h 0 \leq keys[i][j] < status.length 0keys[i][j]<status.length
  • k e y s [ i ] keys[i] keys[i] 中的值都是互不相同的。
  • 0 ≤ c o n t a i n e d B o x e s [ i ] . l e n g t h ≤ s t a t u s . l e n g t h 0 \leq containedBoxes[i].length \leq status.length 0containedBoxes[i].lengthstatus.length
  • 0 ≤ c o n t a i n e d B o x e s [ i ] [ j ] < s t a t u s . l e n g t h 0 \leq containedBoxes[i][j] < status.length 0containedBoxes[i][j]<status.length
  • c o n t a i n e d B o x e s [ i ] containedBoxes[i] containedBoxes[i] 中的值都是互不相同的。
  • 每个盒子最多被一个盒子包含。
  • 0 ≤ i n i t i a l B o x e s . l e n g t h ≤ s t a t u s . l e n g t h 0 \leq initialBoxes.length \leq status.length 0initialBoxes.lengthstatus.length
  • 0 ≤ i n i t i a l B o x e s [ i ] < s t a t u s . l e n g t h 0 \leq initialBoxes[i] < status.length 0initialBoxes[i]<status.length

解法:bfs

我们用一个哈希表 h a v e _ k e y have\_key have_key 记录手里拥有的钥匙;

我们用一个哈希表 h a v e _ b o x have\_box have_box 记录手里拥有的箱子;

我们用 v i s vis vis 记录访问过的盒子(能够打开的);

初始时,我们将 i n i t i a l B o x e s initialBoxes initialBoxes 里的 处于 打开状态(也就是 s t a t u s [ i ] = 1 status[i] = 1 status[i]=1) 的盒子 i i i 入队。

进行bfs。

取出队首盒子 t t t ,累加能够获得的糖果 c a n d i e s [ t ] candies[t] candies[t] ,此时打开盒子 t t t ,获得的新的盒子是 b o x e s boxes boxes ,获得的新钥匙是 k e y key key

遍历新钥匙 k e y key key,如果我们手中有对应的没打开的盒子,那我们就将其入队, v i s vis vis记录下来。

遍历新盒子 b o x e s boxes boxes,如果我们手中有对应的钥匙 或是 这个盒子本身就处于打开的状态,那我们就将其入队, v i s vis vis记录下来。

时间复杂度: O ( n ) O(n) O(n)

C++代码:

class Solution {
public:
    int maxCandies(vector<int>& status, vector<int>& candies, vector<vector<int>>& keys, vector<vector<int>>& containedBoxes, vector<int>& initialBoxes) {
        int n = status.size();
        vector<bool> vis(n);
        
        //记录持有的钥匙 和 盒子
        unordered_set<int> have_key , have_box;
        queue<int> q;

        for(auto box:initialBoxes){
            //记录盒子
            have_box.insert(box);
            
            //能够打开的盒子才将其入队
            if(status[box]){
                q.push(box);
                vis[box] = true;
            }
        }

        int ans = 0;

        while(!q.empty()){
            auto t = q.front();
            q.pop();
            
            //累加糖果
            ans += candies[t];

            auto key = keys[t];
            auto boxes = containedBoxes[t];
            
            //遍历新钥匙 , 如果有对应的盒子就将其入队,记录下来
            for(auto k:key){
                have_key.insert(k);
                if(!vis[k] && have_box.count(k)){
                    q.push(k);
                    vis[k] = true;
                }
            }

            //遍历新盒子 , 如果有对应的钥匙 或是 这个盒子本身就处于打开状态 就将其入队,记录下来
            for(auto box:boxes){
                have_box.insert(box);
                if(!vis[box] && (have_key.count(box) || status[box])){
                    q.push(box);
                    vis[box] = true;
                }
            }
        }

        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值