Chapter 03
纳什均衡:
纳什均衡是指在博弈中,每个玩家的策略都是对其他玩家策略的最佳反应。在纳什均衡点,没有玩家有动机单方面改变自己的策略。
囚徒困境
美国国会与联邦储蓄银行,国会希望预算平衡,预算赤字,银行希望低利率,双方有冲突,国会预算平衡,银行低利率,皆大欢喜,高利率时,对国会来说收益降低,国会采取预算赤字,银行收益降低,对联邦银行,没有其占优策略
对这个的纳什均衡,对国会来说将劣策略删除,因此银行只能高利率,因此会通货膨胀
纳什均衡不是最优策略,谁偏离的大谁损失大
连续删除非占优策略-------也可以找到纳什均衡策略
最佳反应分析:
在N玩家的正规形式博弈中,对于玩家i,如果策略S∗在给定其他玩家策略组合S−i的情况下,使得玩家i的效用Ui(S∗,S−i)大于或等于任何其他策略S的效用Ui(S,S−i),则称S∗是玩家i对S−i的最佳反应。
三个体的矩阵分析(Three players game)
一个个体的每个条件下,其他;两个人制作矩阵
多个纳什均衡的时候,通过精炼或加强条件来将策略删除
理性化可导出纳什均衡
Chapter 05 : Combining sequential and simultaneous moves
在战略互动中,将顺序行动(sequential moves)和同时行动(simultaneous moves)结合起来是一种常见的情况。
在现实中,许多战略情况包含了顺序和同时行动的元素。例如,纯粹的顺序博弈可以通过博弈树(扩展形式)和回溯均衡(rollback equilibrium)来分析,而纯粹的同时博弈则通过收益表(策略形式)和纳什均衡(Nash equilibrium)来分析。可以交叉使用扩展形式或策略形式来分析任何类型的博弈
两阶段博弈和子博弈:
一个主要的示例是两个潜在的电信巨头,CrossTalk和GlobalDialog,它们可以同时选择是否投资1000亿美元购买光纤网络。如果两家公司都投资,它们将进入第二个同时行动的定价游戏
两阶段博弈和子博弈经典实例:
一个主要的示例是两个潜在的电信巨头,CrossTalk和GlobalDialog,它们可以同时选择是否投资1000亿美元购买光纤网络。如果两家公司都投资,它们将进入第二个同时行动的定价游戏。在微观经济学和博弈论中,玩家的战略行动可以顺序发生或同时发生,形成顺序或同时博弈。这两种游戏类型都提供了分析战略互动和决策的有洞察力的视角。