1、整数在内存中的存储
在讲解整数存储之前,首先需要知道什么是二进制。平时我们使用的都是十进制,二进制顾名思义全都是由0和1组成的数字,计算机中存储的就是二进制。
1.1二进制和十进制的相互转换
十进制转二进制,不断除以2,每次除以2都将余数按从上到下写在旁边,知道商为0,以余数从下到上写出来就是二进制了。
例如:8
二进制转十进制使用按权展开求和法,从右边开始的二进制第一位为2的0次方,第二位2的1次方,第三位2的三次方等等,将每一个二进制的位数与2的n次方相乘,最后相加得出的结果就是十进制数字了。
例如:1000
1.2原码、反码、补码
二进制的最高位 为符号位(最左边),0表示正数,1表示负数。
正数的原码、反码、补码相同
原码:十进制转换成的二进制
反码:符号位不变,其余位取反(1变成0,0变成1)
补码:反码+1
例如:-8
原码:10001000
反码:11110111
补码:11111000
二进制满2进1.
计算机中整数都是以补码进行存储和操作的。
2、浮点数在内存中的存储
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式
V = (-1)^S * M * 2 ^ E
(-1)^S表示符号位,S为0表示正数,S为1b表示负数
M表示有效位,1 <= M < 2
2^E表示指数位
例如:5.5
二进制形式为101.1,这里需要介绍一下小数的二进制表示,小数点后面的是2 ^ -1次方,依次类推
同样适用于按权展开求和。
那么,按照上面的格式可以得出 S = 0, M = 1.011,E = 2;
十进制的-5.0,写成二进制-101.0,相当于-1.01 * 2 ^2.那么 S = 1,M = 1.01,E = 2.
IEEE754规定,对于32位浮点数,最高的1位存储符号S,接着的8位存储指数E,后面23位存储有效数字M。
float类型浮点数内存分配
double类型浮点数内存分配
2.1 浮点数存的过程
IEEE754对有效数字M和指数E,还有一些特别规定。
1 <= M < 2。M可以写成1.XXXXXX的形式,其中XXXXXX表示小数部分。
IEEE754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的XXXXX部分。比如保存1.01时,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省一位有效数字。以32浮点数为例,留给M的只有23位,将第一位的1舍去之后,等于可以保存24位有效数字(整数部分1位,小数部分23位)。
至于指数E情况就比较复杂
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围0~255;如果E为11位,它的取值范围0~2047。但是,E是可以出现负数的,例如0.5,二进制形式为0.1, S = 0,M = 1.0,E = -1。所以,IEEE754规定, 存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,保存至32位浮点数时,必须保存成10 + 127 = 137;即10001001。
2.2浮点数取出的过程
指数E从内存中取出还可以再分成3种情况。
E不为全0或者不为全1
这时,浮点数就采取下面的规则,即指数E的计算值减去127(或者1023),得到真实值,再将有效数字M前加上第一位的1。
比如(以32位浮点数为例),0.5的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移一位,则为1.0*2^-1,其阶码为-1 + 127(中间值)= 126,表示为011111110,而尾数1.0去掉整数部分为0,补齐0到23位,二进制的形式如下:
0 01111110 00000000000000000000000
以下两种情况读者可不必深究,了解即可。
E全为0(以32位浮点数为例)
这时,浮点数的指数E等于1-127(1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.XXXXX的小数。这样做是为了表示+-0,以及接近于0的很小的数字。
0 00000000 00100000000000000000000
E全为1(以32位浮点数为例)
这时,如果有效数字全为0,表示+-无穷大(正负取决于符号位S)
0 11111111 00010000000000000000000
感谢你的阅读,欢迎批评指正!!