📝 引言
大家好!今天我们将一起解决一个经典而有趣的算法问题 - “分弹珠” 。通过这个生动的例子,将帮助我们更好的掌握如何解决整数划分类问题。祝你有所收获!
🎲 问题引入:有趣的分弹珠游戏
问题描述
想象这样一个场景:你有 M 个闪亮的弹珠和 N 个漂亮的盘子,需要设计一个程序来计算所有可能的分配方案。具体要求如下:
- ✅ 每个盘子可以为空
- ✅ 相同的弹珠数量分配被视为同一种方案(与盘子顺序无关)
- ✅ 所有弹珠必须分配完
💡 示例
假设有7个弹珠分到3个盘子中:方案1:(7,0,0) - 所有弹珠都在第一个盘子 方案2:(6,1,0) - 第一个盘子6个,第二个1个 方案3:(5,2,0) - 第一个盘子5个,第二个2个 方案4:(5,1,1) - 第一个盘子5个,其余各1个 方案5:(4,3,0) - 第一个盘子4个,第二个3个 方案6:(4,2,1) - 第一个盘子4个,第二个2个,第三个1个 方案7:(3,3,1) - 前两个盘子各3个,最后1个 方案8:(3,2,2) - 第一个盘子3个,后两个各2个
🔍 深入理解问题本质
1. 问题的数学本质
整数划分问题实际上是组合数学中的一个重要分支:
- 它研究将一个正整数表示为若干正整数之和的方法数
- 在我们的问题中,还需要考虑分配到固定数量容器的约束
2. 问题的特殊性质
- 对称性:盘子的顺序不重要,(3,2,0)和(2,3,0)被视为同一种方案
- 单调性:每个盘子中的弹珠数量可以按非增顺序排列
- 可加性:总数 = 各部分之和
🎯 解题思路详解
1. 递推公式的推导
让我们通过分类讨论来推导递推公式:
将最多待分弹珠的盘子数不大于n的划分方案数记作P(m,n),可以建立P(m,n)的如下递归关系:
- 考虑最后一个盘子的状态:
- 情况1: 最后一个盘子为空 → 问题转化为只需要分给前面n-1个盘子→ P(m, n-1)
- 情况2: 最后一个盘子不为空 → 每个盘子至少有一颗弹珠,有n个盘子,则剩余可以再划分的弹珠数为m-n→ P(m-n, n)
- 数学表达:
P ( m , n ) = P ( m , n − 1 ) + P ( m − n , n ) P(m, n) = P(m, n-1) + P(m-n, n) P(m,n)=P(m,n−1)+P(m−