方法一:递归
思路
由题意可知,两个链表头部值较小的一个节点与剩下元素的 m e r g e merge merge 操作结果合并。
算法
我们直接将以上递归过程建模,同时需要考虑边界情况。
如果
l
1
l1
l1 或者
l
2
l2
l2 一开始就是空链表 ,那么没有任何操作需要合并,所以我们只需要返回非空链表。否则,我们要判断
l
1
l1
l1 和
l
2
l2
l2 哪一个链表的头节点的值更小,然后递归地决定下一个添加到结果里的节点。如果两个链表有一个为空,递归结束。
代码
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) {
if (l1 == nullptr) {
return l2;
} else if (l2 == nullptr) {
return l1;
} else if (l1 -> val < l2 -> val) {
l1 -> next = mergeTwoLists(l1 -> next, l2);
return l1;
} else {
l2 -> next = mergeTwoLists(l1, l2 -> next);
return l2;
}
}
};
复杂度分析
- 时间复杂度: O ( n + m ) O(n + m) O(n+m),其中 n n n 和 m m m 分别为两个链表的长度。因为每次调用递归都会去掉 l 1 l1 l1 或者 l 2 l2 l2 的头节点(直到至少有一个链表为空),函数 m e r g e T w o L i s t mergeTwoList mergeTwoList 至多只会递归调用每个节点一次。因此,时间复杂度取决于合并后的链表长度,即 O ( n + m ) O(n + m) O(n+m)。
- 空间复杂度:
O
(
n
+
m
)
O(n + m)
O(n+m),其中
n
n
n 和
m
m
m 分别为两个链表的长度。递归调用
m
e
r
g
e
T
w
o
L
i
s
t
s
mergeTwoLists
mergeTwoLists 函数时需要消耗栈空间。结束递归调用时,
m
e
r
g
e
T
w
o
L
i
s
t
s
mergeTwoLists
mergeTwoLists 函数最多调用
n
+
m
n + m
n+m 次,因此空间复杂度为
O ( n + m ) O(n + m) O(n+m)。
方法二:迭代
思路
其实也可以用迭代的方法来实现上述算法。当
l
1
l1
l1 和
l
2
l2
l2 都不是空链表时,判断
l
1
l1
l1 和
l
2
l2
l2 哪一个链表的头节点的值更小,将较小值的节点添加到结果里,当一个节点被添加到结果里之后,将对应链表中的节点向后移一位。
算法
算法
首先,我们设定一个节点 a n s ans ans ,这可以在最后让我们比较容易地返回合并后的链表。我们维护一个 c u r r curr curr 指针,我们需要做的是调整它的 n e x t next next 指针。然后,我们重复以下过程,直到 l 1 l1 l1 或者 l 2 l2 l2 指向了 n u l l p t r nullptr nullptr :如果 l 1 l1 l1 当前节点的值小于等于 l 2 l2 l2 ,我们就把 l 1 l1 l1 当前的节点接在 c u r r curr curr 节点的后面同时将 l1 指针往后移一位。否则,我们对 l 2 l2 l2 做同样的操作。不管我们将哪一个元素接在了后面,我们都需要把 c u r r curr curr 向后移一位。
在循环终止的时候, l 1 l1 l1 和 l 2 l2 l2 至多有一个是非空的。由于输入的两个链表都是有序的,所以不管哪个链表是非空的,它包含的所有元素都比前面已经合并链表中的所有元素都要大。这意味着我们只需要简单地将非空链表接在合并链表的后面,并返回合并链表即可。
代码
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) {
ListNode* ans = new ListNode(0), *curr = ans;
while (l1 && l2) {
if (l1 -> val <= l2 -> val) {
curr -> next = new ListNode(l1 -> val);
l1 = l1 -> next;
} else {
curr -> next = new ListNode(l2 -> val);
l2 = l2 -> next;
}
curr = curr -> next;
}
curr -> next = l1 ? l1 : l2;
return ans -> next;
}
};
复杂度分析
- 时间复杂度: O ( n + m ) O(n + m) O(n+m),其中 n n n 和 m m m 分别为两个链表的长度。因为每次循环迭代中, l 1 l1 l1 和 l 2 l2 l2 只有一个元素会被放进合并链表中, 因此 w h i l e while while 循环的次数不会超过两个链表的长度之和。所有其他操作的时间复杂度都是常数级别的,因此总的时间复杂度为 O ( n + m ) O(n + m) O(n+m)。
- 空间复杂度: O ( 1 ) O(1) O(1)。我们只需要常数的空间存放变量。