数值计算
文章平均质量分 76
送江入海
一名致力做网前雨刮器的acv攻城狮!
展开
-
幂法 Euler法
在每一步中,不仅仅使用当前点的斜率,还使用了下一个点的斜率,然后取两者平均值作为斜率,从而得到下一个点的近似值。在每一步中,通过计算当前点的斜率,然后使用步长 h进行线性近似,从而得到下一个点的近似值。在每次迭代中,先对当前向量进行规范化,然后进行矩阵与向量的乘积。创建了简单欧拉法和改进欧拉法的对象,并调用相应的函数进行计算。改进欧拉法在简单欧拉法的基础上,通过使用改进的公式来提高精度。通过计算每次迭代后向量中的最大元素,来估计最大特征值的大小。当最大特征值的相对变化小于给定的绝对误差阈值时,停止迭代。原创 2024-06-25 18:54:04 · 456 阅读 · 0 评论 -
复化数值积分算法/非线性方程求解
迭代过程中,每次将区间等分为两部分,计算每部分的积分值,然后按Simpson公式的权重系数计算新的积分值,直到满足收敛条件。迭代过程中,每次将区间等分为两部分,计算每部分的积分值,然后将它们相加并除以2作为新的积分值,直到满足收敛条件。在每次迭代中,将区间等分为两部分,并计算每部分的积分值,然后按Simpson公式的权重系数计算新的积分值。在每次迭代中,将区间等分为两部分,并计算每部分的积分值,然后将它们相加并除以2作为新的积分值。在每次迭代中,根据函数在当前猜测值处的值和导函数的值,计算下一个近似根。原创 2024-06-13 11:02:54 · 1205 阅读 · 0 评论 -
求解线性方程组的直接法、gauss-sidel迭代法
5.打印结果:、调用 print() 打印下三角矩阵 L、上三角矩阵 R、向量 B、向量 Y 和向量 X。调用 GS(dim, A, b, x) 函数执行迭代,解线性方程组。一个N×N 的系数矩阵,在这个例子中是一个 3x3 矩阵。通过从左到右的方式,计算矩阵 R 的元素。通过从上到下的方式,计算矩阵 L 的元素。用户输入矩阵 A 的行数和列数,即矩阵的尺寸 n。一个长度为 N 的初始猜测向量,初始值设为零向量。任取初始向量x(0)=(0, 0, 0)T ,用户输入矩阵 A 的元素和向量 B 的元素。原创 2024-06-11 09:31:39 · 1099 阅读 · 0 评论 -
拉格朗日插值,牛顿插值
不管是使用拉格朗日插值还是牛顿插值,我们都需要根据输入的节点数 n 和待求节点 t,首先找到 t 在数组中的合适位置。然后,从这个位置开始,选取相邻的 n 个节点来进行插值计算。在确定了需要的 n 个节点后,我们可以依据牛顿插值和拉格朗日插值的伪代码,将相应的算法实现为 C++ 代码,进行插值计算。虽然拉格朗日插值和牛顿插值的算法不同,但它们计算得到的结果应该是相同的。已知y=f(x)的数据表如下,求t=0.63处的函数值z=f(t)。相关知识和算法编程完成本实验。拉格朗日插值,牛顿插值。原创 2024-06-03 11:55:41 · 316 阅读 · 0 评论