- 博客(20)
- 收藏
- 关注
原创 解决MESA-LOADER: failed to open swrast(记录个人debug)
创建软连接解决MESA-LOADER: failed to open swrast问题
2024-09-29 10:21:09 545
原创 MobaXterm连接服务器,通过x11 Forwarding实现图形可视化(记录个人学习过程)
在AutoDL查看IP,username和端口。填写好IP,username和端口。
2024-09-16 15:56:28 726
原创 书生浦语作业七
dataset,version,metric,mode,opencompass.models.huggingface.HuggingFace_Shanghai_AI_Laboratory_internlm2-chat-1_8bceval-computer_network,db9ce2,accuracy,gen,47.37ceval-operating_system,1c2571,accuracy,gen,47.37ceval-computer_architecture,a74dad,accuracy,gen
2024-05-10 09:43:52 514
原创 书生浦语笔记七
格式,我们最后需要转化成openAI的数据集的格式,生成一个转换成这样的脚本。使用COIG-CQIA的数据集为例。划分一个训练集和测试集。如何构建高质量的数据。
2024-05-10 09:39:47 1243
原创 书生浦语笔记&作业六
创建好工具文件为了获得稳定的天气查询服务,去获得相关天气服务的API KEY体验自定义工具效果如下:让它帮我查询徐州的天气,调用速度非常快,使用效果很好。在使用过程中,我让它为我生成一幅油画,它能够理解我的意思并做得很好然而,我让它微调一下色调,它却重新生成了一幅画,并且色调和构图与之前那幅图有异曲同工之妙…
2024-05-10 09:37:25 235
原创 书生浦语笔记五
是一个高速发展的社区,包括Meta、Google、Microsoft、Amazon在内的超过5000家组织机构在为HuggingFace开源社区贡献代码、数据集和模型。可以认为是一个针对深度学习模型和数据集的在线托管社区,如果你有数据集或者模型想对外分享,网盘又不太方便,就不妨托管在HuggingFace。托管在HuggingFace社区的模型通常采用HuggingFace格式存储,简写为。但是HuggingFace社区的服务器在国外,国内访问不太方便。国内可以使用阿里巴巴的。
2024-05-10 08:46:26 1539
原创 书生浦语作业五
以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,分别使用命令行客户端与Gradio网页客户端与模型对话。使用W4A16量化,调整KV Cache的占用比例为0.4,使用Python代码集成的方式运行internlm2-chat-1.8b模型。设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。(优秀学员必做)(完成)以命令行方式与 InternLM2-Chat-1.8B 模型对话(完成)
2024-05-10 08:44:50 213
原创 书生·浦语实战营第二期作业4
选择了一个最匹配的配置文件并准备好其他内容后,需要根据自己的内容对该配置文件进行调整,使其能够满足实际训练的要求。通过视频课程的学习可以了解到,对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(adapter),那么训练完的这个层最终还是要与原模型进行组合才能被正常的使用。由于训练得到的模型文件不是hf格式的,所以需要将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 Huggingface 格式文件。"content": "请做一下自我介绍"
2024-05-10 08:23:37 1602
原创 书生浦语笔记三
最后,系统会将生成阶段产生的文本与检索到的文本片段进行整合,以产生最终的输出。这种整合可以是简单的拼接、加权平均等方法, 也可以是更复杂的模型,如将检索到的文本片段作为上下文来微调生成模型。RAG的关键之处在于它将检索和生成两种方法结合起来,利 用了它们各自的优势:检索模型能够从大规模语料库中检索到相关信息,而生成模型则能够根据这些信息生成丰富、流畅的文本。在检索阶段,系统会使用一个强大的检索模型来从大规模语料库中检索相关的文本片段,这些文本片段可能包含对于当前任务(例如问答) 有用的信息。
2024-05-10 08:06:46 212
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人