组合数的四种求法


(这里写自定义目录标题)

一. 组合数的定义

  • 公式: C a b C_{a}^b Cab= a ! ( a − b ) ! ∗ b ! \frac{a!}{(a-b)!*b!} (ab)!b!a!= ( a − b + 1 ) ∗ ( a − b + 2 ) ∗ . . . . ∗ a b ! \frac{(a-b+1)*(a-b+2)*....*a}{b!} b!(ab+1)(ab+2)....a
  • 使用情景:a较大,b较小
  • 时间复杂度:O(b)
  • 实现方法:先分别算出 分子和分母,然后利用求逆元算出最后的结果
int C(int a,int b)
{
	int up=1;
	int down=1;
	for(int i=a,j=1;j<=b;j++,i--)
	{
		up=up*i%p;
		down=down*j%p;
	}
	ans=up*qmi(down,p-2);
}

二. 杨辉三角

  • 公式: C a b C_{a}^b Cab= C a − 1 b C_{a-1}^b Ca1b+ C a − 1 b − 1 C_{a-1}^{b-1} Ca1b1
  • 使用场景:a较小
  • 时间复杂度:O( a 2 a^2 a2)
  • 实现方法:递归打表
int C(int a,int b)
{
	for(int i=0;i<=a;i++)
		for(int j=0;j<=b&&j<=i;j++)
			if(!b) c[i][j]=1;
			else c[i][j]=c[i-1][j]+c[i-1][j-1];
}

三. Lucas定理

  • 公式: C a b C_{a}^b Cab=( C a / p b / p C_{a/p}^{b/p} Ca/pb/p+ C a m o d p b m o d p C_{amodp}^{bmodp} Camodpbmodp)%p
  • 使用场景:用于以较快的速度计算很大的组合数。
  • 时间复杂度:O( l o g n p ∗ p log_{n}p*p lognpp)
int qmi(int a,int b)
{
	int result=1;
	while(b)
	{
		if(b&1) result=result*a%p;
		b>>=1;
		a=(a*a)%p;
	}
	return result;
}
int C(int a,int b)
{
	int ans;
	int down=1,up=1;
	for(int i=1,j=a;i<=b;i++,j--)
	{
		up=up*j%p;
		down=down*i%p;
	}
	ans=up*qmi(down,p-2);
	
	return ans;
}
int Lucas(int a,int b)
{
	if(a<p&&b<p) return C(a,b);
	return C(a%p,b%p)*Lucas(a/p,b/p)%p;
}

四:质因数分解

  • 使用场景:需要求的是组合数的真实值而并非取模值时。
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;
const int N = 5005;
int primes[N], cnt;    // cnt[]存储所有素数,cnt表示统计分解成的素数的个数
int sum[N];    // sum[]存储每个素数的次数
bool st[N];    // st[]存储每个数是否被筛掉

void Euler_seive(int n){    // 欧拉筛法求素数
	for(int i=2;i<=n;i++){
		if(!st[i]) primes[cnt++]=i;
		for(int j=0;primes[j]<=n/i;j++){
			st[primes[j]*i]=true;
			if(i%primes[j] == 0) break;   // 如果这个数能被素数整除,跳出循环
		}
	}
}

int get(int n,int p){    // 求n!中素数p出现的次数
	int res=0;
	while(n){
		res+=n/p;
		n/=p;
	}
	return res;
}

vector<int> mul(vector<int> a,int b){    // 高精度乘法
	vector<int> c;
	int t=0;
	for(int i=0;i<a.size();i++){
		t+=a[i]*b;
		c.push_back(t%10);
		t/=10;
	}
	while(t){
		c.push_back(t%10);
		t/=10;
	}
	return c;
}

int main(){
	int n,m;
	cin>>n>>m;
	Euler_seive(n);
	for(int i=0;i<cnt;i++){    // 求每个质因数出现的次数
		int p=primes[i];
		sum[i]=get(n,p)-get(m,p)-get(n-m,p);
	}
	vector<int> ans;
	ans.push_back(1);
	
	for(int i=0;i<cnt;i++)    // 用高精度乘法将转换后所有剩下的质因数相乘
		for(int j=0;j<sum[i];j++)
			ans=mul(ans,primes[i]);
	
	for(int i=ans.size()-1;i>=0;i--)    // 输出答案
		cout<<ans[i];
	cout<<endl;
	return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值