递归算法是一种通过将问题划分为更小的、类似的子问题来解决问题的方法。在递归算法中,函数会调用自身来解决同一问题的不同实例,直到达到基本情况(终止条件)。
递归算法的关键是要定义清楚递归函数的基本情况和递归情况。基本情况是指可以直接求解的边界条件,而递归情况是指问题可以通过将其划分为更小的同类问题来求解。
只需要少量的程序就可以描述出解题过程所需要的多次重复计算,大大地减小了程序的代码里量。
下面是一个简单的递归算法示例:计算一个数的阶乘。
int factorial(n)
{
# 基本情况:0的阶乘为1
if n == 0:
return 1
# 递归情况:将问题划分为更小的同类问题,并将结果相乘
else:
return n * factorial(n - 1)
}
在上面的示例中,factorial 函数接受一个整数 n 作为参数,并计算其阶乘。当 n 等于 0 时,函数返回 1,这是基本情况。否则,函数调用自身来计算 n-1 的阶乘,并将结果与 n 相乘,这是递归情况。
递归的两个必要条件:
1.存在限制条件,当满足这个限制条件的时候,递归便不再继续。
2.每次递归之后,越来越接近这个限制条件。
下面还有几个题,好好感受一下:
一:求一个字符串的长度,要求编写函数时不允许创建临时变量
my_strlen(char* str)
#include<stdio.h>
int my_strlen(char* str)
{
if(*ch != '\0')
return 1+my_strlen(str+1);//调用递归,不能str++,这样参数就一直是arr[0]的地址;也不推荐++str,因为改变了ch的值
else
return 0;
}
int main()
{
char arr[]="abc";
printf("%d",my_strlen(arr));//arr就是数组的地址,等价于&arr[0] ,也就是首地址
return 0;
}
二:接受一个整形值(无符号),按照顺序打印它的每一位
例如:
输入:1234
输出:1 2 3 4
#include<stdio.h>
void print(unsigned int n)
{
if (n > 9)
{
print(n / 10);
}
printf("%d ", n % 10);
}
int main()
{
int a=0;
scanf("%u",&a);
print(a);
return 0;
}
三:斐波那契数
用递归实现,求第n个斐波那契数
#include<stdio.h>
int fiv(int n)
{
if(n<3)
return 1;
else
return fiv(n-1)+fiv(n-2);
}
int main()
{
int n=0;
scanf("%d",&n);
int ret=fiv(n);
printf("%d",ret);
return 0;
}
递归方法求第n个斐波那契数
缺点:当n足够大时,会造成大量重复计算,浪费时间大约n大于50后计算就非常慢
值大了容易溢出!! 接下来我们可以用其他方法来求斐波那契数。
迭代方法求第n个斐波那契数
int fiv(int n)
int fiv(int n)
{
int a=1;
int b=1;
int c=0;
if(n>=3)
{
while(n>=3)
{
c=a+b;
a=b;
b=c;
n--;
}
return c;
}
else
return 1;
}
下面是图解: