什么是递归算法?

本文介绍了递归算法的工作原理,包括基本情况和递归情况的定义,以及如何通过递归计算阶乘、字符串长度、打印整数每一位和斐波那契数。同时指出了递归求斐波那契数的效率问题,并提到了迭代方法的优化。
摘要由CSDN通过智能技术生成

递归算法是一种通过将问题划分为更小的、类似的子问题来解决问题的方法。在递归算法中,函数会调用自身来解决同一问题的不同实例,直到达到基本情况(终止条件)。

递归算法的关键是要定义清楚递归函数的基本情况和递归情况。基本情况是指可以直接求解的边界条件,而递归情况是指问题可以通过将其划分为更小的同类问题来求解。

只需要少量的程序就可以描述出解题过程所需要的多次重复计算,大大地减小了程序的代码里量。

下面是一个简单的递归算法示例:计算一个数的阶乘。

int factorial(n)
	{
    # 基本情况:0的阶乘为1
    if n == 0:
        return 1
    # 递归情况:将问题划分为更小的同类问题,并将结果相乘
    else:
        return n * factorial(n - 1)
    }

在上面的示例中,factorial 函数接受一个整数 n 作为参数,并计算其阶乘。当 n 等于 0 时,函数返回 1,这是基本情况。否则,函数调用自身来计算 n-1 的阶乘,并将结果与 n 相乘,这是递归情况。

递归的两个必要条件:
1.存在限制条件,当满足这个限制条件的时候,递归便不再继续。
2.每次递归之后,越来越接近这个限制条件。
下面还有几个题,好好感受一下:

一:求一个字符串的长度,要求编写函数时不允许创建临时变量

my_strlen(char* str)
#include<stdio.h>
int my_strlen(char* str)
{	
	if(*ch != '\0')
		return 1+my_strlen(str+1);//调用递归,不能str++,这样参数就一直是arr[0]的地址;也不推荐++str,因为改变了ch的值 
	else 
		return 0;
}
int main()
{
	char arr[]="abc";
	printf("%d",my_strlen(arr));//arr就是数组的地址,等价于&arr[0] ,也就是首地址 
	return 0;
}

二:接受一个整形值(无符号),按照顺序打印它的每一位

例如:
输入:1234
输出:1 2 3 4 
#include<stdio.h>

void print(unsigned int n)
{
	if (n > 9)
	{
		print(n / 10);
	}

	printf("%d ", n % 10);

}
int main()
{
	 int a=0;
	
	scanf("%u",&a);
	print(a);
	return 0;
	
 } 

三:斐波那契数

用递归实现,求第n个斐波那契数
#include<stdio.h>
int fiv(int n)
{
	if(n<3)
		return 1;
	else 
		return fiv(n-1)+fiv(n-2);
}

int main()
{
	int n=0;
	scanf("%d",&n);
	int ret=fiv(n);
	printf("%d",ret);
	return 0;
 } 

递归方法求第n个斐波那契数
缺点:当n足够大时,会造成大量重复计算,浪费时间大约n大于50后计算就非常慢
值大了容易溢出!! 接下来我们可以用其他方法来求斐波那契数。

迭代方法求第n个斐波那契数
int fiv(int n)
int fiv(int n)
{
	int a=1;
	int b=1;
	int c=0;
	if(n>=3)
	{
		while(n>=3)
		{	
			c=a+b;
			a=b;
			b=c; 
			n--;
		}
		return c;
	}
	else
		return 1;
}

下面是图解:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风不归it

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值