实测阿里-通义听悟——你的工作学习AI助手

文章作者对通义听悟进行了体验,发现其在转写速度和识别能力上有优势,但存在字幕断句错误、章节速览不全面和发言总结片面的问题。针对专有名词和句子逻辑理解不足,建议改进自有词汇设置和AI理解能力。相比网易见外工作台,通义听悟并未提供显著优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

前段时间手机上面一大把博主在推荐通义听悟,但在我体验过一段时间后觉得通义听悟言过其实了。

介绍

通义听悟已开启公测,公测期(2023年6月1日至30日)用户可体验所有AI功能,含全文概要、章节速览、发言总结等高阶AI功能。通过阿里云主账号登录,可享受以下权益:

  • 每日登录通义听悟,自动获得2小时转写时长;
  • 每邀请1名好友注册并登录通义听悟账号,邀请者可获得2小时转写时长;
  • 输入口令即可获得额外的转写时长;
  • 通义听悟绑定阿里云盘账号,共享云盘超大存储空间。
    pC1o8YV.md.png

链接

通义听悟:传送门

使用文档:了解通义听悟 - 通义听悟 (aliyun.com)

功能

  • 🚀实时记录交流内容,同步翻译
  • 🚀批量转写音视频文件,区分发言人
  • 🚀智能提炼全文概要、章节速览、发言总结
  • 🚀自动提取关键词、问题、待办事项
  • 🚀编辑整理笔记,导出记录

体验

我选择了影视飓风的视频【比画面更重要?这也许是拍视频最容易忽略的因素!】,作为转写对象来测试通义听悟的能力。

上传视频到通义听悟,这边既可以选择本地上传,也可以选择上传阿里网盘里面的视频文件。
pC1ouLj.png
我们可以发现他的上传速度和转写的速度还是很快的
pC1oMes.md.png
整个过程大约花费三分钟(实际用时可能会受到视频长度的影响),这边就可以在工作台看见视频已经转写好了。
pC1oloq.md.png
这边完成了视频的章节的标注和内容大纲的梳理,先不看他是否有误,能让人清晰明了知道视频讲述了什么。
pC1o8YV.md.png

这边我也是一个个给他挑错…

(而)有着良好声音体验的前提

麦克风的(秘密)

热血(热靴)MI接口麦克风

并且带动产生(唱针)震动(振动)

还有96千赫兹则相当于更高分辨率的8K或者16K的音箱(影像)

接下来我们将分别介绍在室内户外短片拍摄以及目录(Vlog)

心情(心型)或者是超新型(超心型)指向型麦克风也能够有效的降低声音的混响

那这样的全指向型WBT(W2BT)无线领夹麦克风也是一个很好的选择

就是用parallel麦克风(Parabolic Microphone)

问题1

字幕的断句在一些地方非常奇怪,会改变原有意思产生歧义

通义听悟:通过首创的热血MI接口麦克风,能够直接在相机上输出数字信号

正确表达:通过首创的热靴MI接口,麦克风能够直接在相机上输出数字信号

问题2

章节速览不够全面,分得也不够清楚。
pC1o3F0.png
发言总结过于片面,重点内容往往没有凸显出来。(例:介绍麦克风的视频TIM提醒我要保护好听力?!)
pC1oQwn.png

后记

总的来说,通义听悟的识别能力和识别速度在同类转写程序中是有一定优势的,但是对于一些专有名词,一些句子的逻辑他并不是完全理解。

对于专有名词,可以根据文档设置自有词汇以提高转写的精度。

对于章节速览与发言总结等AI功能出现的理解有误、逻辑错误与侧重点错误我推测是因为通义听悟并没有真正理解语句的意思。我也使用过网易见外工作台,同样的转写能力但阿里的AI功能并没有为我提供更多更好的帮助,这是阿里之后需要改进的地方。

如果你对于通义听悟有什么看法,欢迎在评论区进行交流!


本文原创,首发于博客冬天的小窝
本文允许转载,转载前请阅读:关于 - 冬天的小窝 (iamdt.cn) 。转载即视为遵守网站申明。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值