给定一个二叉树的根节点 root
,返回 它的 中序 遍历 。
示例 1:
输入:root = [1,null,2,3] 输出:[1,3,2]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [1] 输出:[1]
提示:
- 树中节点数目在范围
[0, 100]
内 -100 <= Node.val <= 100
思路一:递归思想
中序:左根右的顺序
题目需要返回的是数组,returnSize是存储数组大小的指针,我们需要初始化一个数组来存储结果,此时代码里的a就是我们建立的一个大小为200的数组,让returnSize初始化为0,然后进行递归遍历,递归遍历的函数内包含根结点,存储结点内容的数组,及数组大小,i来记录变化的数组大小,先中序递归遍历左子树,将根结点值赋给数组,再中序递归遍历右子树,最终返回数组。
代码:
void inorder(struct TreeNode*root,int *a,int *returnSize){
int i;
if(root!=NULL){
inorder(root->left,a,returnSize);
i=(*returnSize)++;
a[i]=root->val;
inorder(root->right,a,returnSize);
}
}
int* inorderTraversal(struct TreeNode* root, int* returnSize) {
int *a=(int*)malloc(sizeof(int)*200);
*returnSize=0;
inorder(root,a,returnSize);
return a;
}
思路二:迭代
代码:相当于是栈的操作。
与思路一差不多,不同的是我们建立了一个数组来模拟栈的入栈和出栈操作。
void inorder(struct TreeNode* root,int *a,int *returnSize){
struct TreeNode* *stack=malloc(sizeof(struct TreeNode*)*200);
int top=0;
struct TreeNode *p;
p=root;
while(p!=NULL||top!=0){
if(p!=NULL){
stack[top++]=p;
p=p->left;
}
else{
p=stack[--top];
a[(*returnSize)++]=p->val;
p=p->right;
}
}
}
int* inorderTraversal(struct TreeNode* root, int* returnSize) {
int *a=(int *)malloc(sizeof(int)*100);
*returnSize=0;
inorder(root,a,returnSize);
return a;
}
思路三:
(非递归遍历)用到栈
这里用到了栈的思想,我们定义一个栈,初始化栈,当我们的结点或栈不为空时,如果结点不为空,我们让它进栈,指向它的左孩子。循环结束说明此时左孩子根结点已没有,中序遍历左根右的思想,我们就让它出栈,访问当前结点的值,再指向右孩子。
例如:
一棵树为:ABC##DE#G##F###
中序遍历为:CBEGDFA
p等于结点,结点为A,节点不为空,则A进栈,此时p指向A的左孩子结点B,p不为空,则B进栈,
此时p指向B的左孩子C,p不为空,则C进栈,p指向C的左孩子,左孩子为空,则p为空,退出循环,此时栈内有三个元素A,B,C,我们将其出栈并输出该结点,则为C,p指向C的右孩子,右孩子为空,我们继续将栈内元素输出,则输出结点B,此时p指向B的右孩子,右孩子为D,不为空,进入循环,则D进栈,p指向D的左孩子,D的左孩子为E,p不为空,则E进栈,此时,p指向E的左孩子,E的左孩子为空,则退出循环,将E的根输出,p指向E的右孩子为G,此时根结点不为空,则G进栈,p指向G的左孩子为空,退出循环,然后将其出栈。依次得到中序遍历结果。
中序代码:
void Inorder(BiTree root){
SeqStack *s;
BiTree p;
s=Init();
p=root;
while(p!=NULL||!IsEmpty(s)){
while(p!=NULL){
Push(s,p);
p=p->Lchild;
}
if(!IsEmpty(s)){
Pop(s,&p);
printf("%c",p->data);
p=p->Rchild;
}
}
}
整体代码:
#include<stdio.h>
#include<stdlib.h>
# define max 100
typedef char DataType;
typedef struct Node{
DataType data;
struct Node *Lchild;
struct Node *Rchild;
}BiTNode,*BiTree;
typedef struct{
BiTree data[max];
int top;
}SeqStack;
SeqStack * Init(){
SeqStack *s;
s=(SeqStack*)malloc(sizeof(SeqStack));
s->top=-1;
return s;
}
int IsEmpty(SeqStack *s){
if(s->top==-1){
return 1;
}
else{
return 0;
}
}
void Push(SeqStack *s,BiTree x){
if(s->top==max-1){
return;
}
else{
s->top++;
s->data[s->top]=x;
}
}
void Pop(SeqStack *s,BiTree *x){
if(IsEmpty(s)){
return;
}
else{
*x=s->data[s->top];
s->top--;
}
}
BiTree Create(){
BiTree bt;
char ch;
ch=getchar();
if(ch=='#'){
return NULL;
}
else{
bt=(BiTree)malloc(sizeof(BiTNode));
bt->data=ch;
bt->Lchild=Create();
bt->Rchild=Create();
return bt;
}
}
void Inorder(BiTree root){
SeqStack *s;
BiTree p;
s=Init();
p=root;
while(p!=NULL||!IsEmpty(s)){
while(p!=NULL){
Push(s,p);
p=p->Lchild;
}
if(!IsEmpty(s)){
Pop(s,&p);
printf("%c",p->data);
p=p->Rchild;
}
}
}
void PrintTree(BiTree bt,int h)
{
if(bt == NULL)
return ;
PrintTree(bt->Rchild,h+1);
for(int i=0;i<h;i++)
printf(" ");
printf("%c\n",bt->data);
PrintTree(bt->Lchild,h+1);
}
int main(){
BiTree root;
root=Create();
Inorder(root);
printf("\n");
PrintTree(root,0);
}