省赛集训题解
D. Make Them Equal
https://codeforces.com/problemset/problem/1633/D
题意:给定一个长度为n初始值都为1的数组a,一个目标数组b(b[i] <= 1e3),一个价值数组c,你有最多k次操作,每次你可以将a[i]变成a[i]+a[i]/x(ps:
a
i
=
a
i
+
⌊
a
i
x
⌋
a_i = a_i + \left\lfloor\frac{a_i}{x}\right\rfloor
ai=ai+⌊xai⌋)。在进行完你的操作后,如果a[i]=b[i],那么你将获得c[i]的价值。你需要确定你可以获得的最大价值为多少。
思路:bfs+01背包
首先,观察式子 a i = a i + ⌊ a i x ⌋ a_i = a_i + \left\lfloor\frac{a_i}{x}\right\rfloor ai=ai+⌊xai⌋可以发现在一次操作中,a[i]可以得到多个数,所以我们可以用bfs预处理出从1变成某个数的操作次数。因为题目给定的最大值是1000,从1到1000所需要的操作次数为12,一共有n个数,k的最大值为12n,因此我们可以使用01背包求解,时间复杂度最大为O(12n*n)。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define PII pair<int, int>
const int N = 1e6 + 5;
ll n, m;
ll cnt[N];
void init() {
memset(cnt, -1, sizeof cnt);
cnt[1] = 0;
queue<int> q;
q.push(1);
while(q.size()) {
auto t = q.front();
q.pop();
for (int i = 1; i <= t; i ++ ) {
int j = t + t / i;
if (cnt[j] != -1 || j > 1e3 || j == 1) continue ;
cnt[j] = cnt[t] + 1;
q.push(j);
}
}
}
void run() {
cin >> n >> m;
vector<ll> b(n + 1), c(n + 1);
for (int i = 1; i <= n; i ++ ) {
int x;
cin >> x;
b[i] = cnt[x];
}
for (int i = 1; i <= n; i ++ ) cin >> c[i];
m = min(m, n * 12);
vector<ll> dp(m + 1);
for (int i = 1; i <= n; i ++ )
for (int j = m; j >= b[i]; j -- ) {
dp[j] = max(dp[j], dp[j - b[i]] + c[i]);
}
cout << dp[m] << '\n';
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);cout.tie(nullptr);
init();
int tcase = 1;
cin>>tcase;
while (tcase--)
run();
}
C. Balanced Stone Heaps
https://codeforces.com/problemset/problem/1623/C
题意:给定长度为n的数组,你可以顺序的将第i(i>=3)个数减去3d,然后第i-1个数增加d,第i-2个数增加2d。你需要确定在进行完所有操作后数组中的最小值最大为多少。
思路:二分
因为只能将当前值分配给前面的值,因此很容易想到从后往前遍历。我们可以二分我们能得到的最小值最大是多少,此时d=(a[i]-mid)/3,需要注意的是我们只能从前往后地分配,因此d=min(a[i]/3,(a[i]-mid)/3)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define PII pair<int, int>
const int N = 1e5 + 5;
ll n, m;
void run() {
cin >> n;
int l = 1e9, r = 0;
vector<int> a(n + 1);
for (int i = 1; i <= n; i ++ ) {
cin >> a[i];
r = max(a[i], r);
l = min(a[i], l);
}
while (l <= r) {
int mid = l + r >> 1;
vector<int> b = a;
bool ok = 1;
for (int i = n; i > 2; i -- ) {
if (b[i] < mid) {
ok = 0;
break ;
}
int p = min(a[i] / 3, (b[i] - mid) / 3);
b[i - 1] += p;
b[i - 2] += 2 * p;
b[i] -= 3 * p;
}
if (b[1] < mid || b[2] < mid) ok = 0;
if (ok) l = mid + 1;
else r = mid - 1;
}
cout << r << '\n';
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);cout.tie(nullptr);
int tcase = 1;
cin>>tcase;
while (tcase--)
run();
}