省赛集训题解

省赛集训题解

D. Make Them Equal

https://codeforces.com/problemset/problem/1633/D

题意:给定一个长度为n初始值都为1的数组a,一个目标数组b(b[i] <= 1e3),一个价值数组c,你有最多k次操作,每次你可以将a[i]变成a[i]+a[i]/x(ps: a i = a i + ⌊ a i x ⌋ a_i = a_i + \left\lfloor\frac{a_i}{x}\right\rfloor ai=ai+xai)。在进行完你的操作后,如果a[i]=b[i],那么你将获得c[i]的价值。你需要确定你可以获得的最大价值为多少。
思路:bfs+01背包

首先,观察式子 a i = a i + ⌊ a i x ⌋ a_i = a_i + \left\lfloor\frac{a_i}{x}\right\rfloor ai=ai+xai​可以发现在一次操作中,a[i]可以得到多个数,所以我们可以用bfs预处理出从1变成某个数的操作次数。因为题目给定的最大值是1000,从1到1000所需要的操作次数为12,一共有n个数,k的最大值为12n,因此我们可以使用01背包求解,时间复杂度最大为O(12n*n)。

#include <bits/stdc++.h>
using namespace std;
 
#define ll long long 
#define PII pair<int, int>

const int N = 1e6 + 5;

ll n, m;
ll cnt[N];

void init() {
    memset(cnt, -1, sizeof cnt);

    cnt[1] = 0;
    queue<int> q;
    q.push(1);
    while(q.size()) {
        auto t = q.front();
        q.pop();

        for (int i = 1;  i <= t; i ++ ) {
            int j = t + t / i;
    
            if (cnt[j] != -1 || j > 1e3 || j == 1) continue ;
            cnt[j] = cnt[t] + 1;
            q.push(j);
        }
    }
}

void run() {
    cin >> n >> m;
    vector<ll> b(n + 1), c(n + 1);
    for (int i = 1; i <= n; i ++ ) {
        int x;
        cin >> x;
        b[i] = cnt[x];
    } 
    for (int i = 1; i <= n; i ++ ) cin >> c[i];

    m = min(m, n * 12);
    vector<ll> dp(m + 1);
    for (int i = 1; i <= n; i ++ )
        for (int j = m; j >= b[i]; j -- ) {
            dp[j] = max(dp[j], dp[j - b[i]] + c[i]);
        }
            
    cout << dp[m] << '\n';
}  

int main(){
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);cout.tie(nullptr);
    init();
    int tcase = 1;
    cin>>tcase;
    while (tcase--) 
        run();
}
C. Balanced Stone Heaps

https://codeforces.com/problemset/problem/1623/C
题意:给定长度为n的数组,你可以顺序的将第i(i>=3)个数减去3d,然后第i-1个数增加d,第i-2个数增加2d。你需要确定在进行完所有操作后数组中的最小值最大为多少。

思路:二分

因为只能将当前值分配给前面的值,因此很容易想到从后往前遍历。我们可以二分我们能得到的最小值最大是多少,此时d=(a[i]-mid)/3,需要注意的是我们只能从前往后地分配,因此d=min(a[i]/3,(a[i]-mid)/3)

#include <bits/stdc++.h>
using namespace std;
 
#define ll long long 
#define PII pair<int, int>

const int N = 1e5 + 5;

ll n, m;

void run() {
    cin >> n;
    int l = 1e9, r = 0;
    vector<int> a(n + 1);
    for (int i = 1; i <= n; i ++ ) {
        cin >> a[i];
        r = max(a[i], r);
        l = min(a[i], l);
    }
    
    while (l <= r) {
        int mid = l + r >> 1;

        vector<int> b = a;
        bool ok = 1;
        for (int i = n; i > 2; i -- ) {
            if (b[i] < mid) {
                ok = 0;
                break ;
            }

            int p = min(a[i] / 3, (b[i] - mid) / 3);
            b[i - 1] += p;
            b[i - 2] += 2 * p;
            b[i] -= 3 * p;
        }
        if (b[1] < mid || b[2] < mid) ok = 0;
    
        if (ok) l = mid + 1;
        else r = mid - 1;
    }
    
    cout << r << '\n';
}  
 
int main(){
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);cout.tie(nullptr);

    int tcase = 1;
    cin>>tcase;
    while (tcase--) 
        run();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值