1.完全背包
题目链接
https://www.nowcoder.com/share/jump/3971807151726994310126
题⽬描述
你有⼀个背包,最多能容纳的体积是 V。
现在有 n 种物品,每种物品有任意多个,第i种物品的体积为 vi,价值为 wi。 (1)求这个背包⾄多能装多⼤价值的物品?
(2)若背包恰好装满,求⾄多能装多⼤价值的物品?
输⼊描述:
第⼀⾏两个整数 n 和 V,表⽰物品个数和背包体积。
接下来 n ⾏,每⾏两个数 vi 和 wi,表⽰第i种物品的体积和价值。
1 ≤ n,V ≤ 1000
输出描述:
输出有两⾏,第⼀⾏输出第⼀问的答案,第⼆⾏输出第⼆问的答案,如果⽆解请输出 0。
⽰例1
输⼊:2 6
5 10
3 1
输出:10
2
⽰例2
输⼊:3 8
3 10
9 1
10 1
输出:20
0
说明:⽆法恰好装满背包。
⽰例3
输⼊:6 13
13 189
17 360
19 870
14 184
6 298 16 242
输出:596
189
说明:可以装 5 号物品 2 个,达到最⼤价值 298*2=596,若要求恰好装满,只能装 1 个 1 号物品,
价值为189.
解法(动态规划)
算法思路
背包问题的状态表示⾮常经典,如果⼤家不知道怎么来的,就把它当成⼀个模板记住吧~
我们先解决第⼀问:
1. 状态表⽰:
dp[i][j] 表⽰:从前 i 个物品中挑选,总体积不超过 j ,所有的选法中,能挑选出来的最
⼤价值。(这⾥是和 01背包⼀样哒)
2. 状态转移⽅程:
线性 dp 状态转移⽅程分析⽅式,⼀般都是根据最后⼀步的状况,来分情况讨论。但是最后⼀个
物品能选很多个,因此我们的需要分很多情况:
i. 选 0 个第 i 个物品:此时相当于就是去前 i - 1
个物品中挑选,总体积不超过 j 。
此时最⼤价值为 dp[i - 1][j]
;
ii. 选 1 个第 i 个物品:此时相当于就是去前 i - 1
个物品中挑选,总体积不超过 j - v[i]
。因为挑选了⼀个 i 物品,此时最⼤价值为 dp[i - 1][j - v[i]] + w[i]
;
iii. 选 2 个第 i 个物品:此时相当于就是去前 i - 1 个物品中挑选,总体积不超过 j - 2 * v[i] 。因为挑选了两个 i 物品,此时最⼤价值为 dp[i - 1][j - 2 * v[i]] + 2 * w[i]
;
iv. …
综上,我们的状态转移⽅程为:
dp[i][j]=max(dp[i-1][j], dp[i-1][j-v[i]]+w[i], dp[i-1][j2*v[i]]+2*w[i]...)
当我们发现,计算⼀个状态的时候,需要⼀个循环才能搞定的时候,我们要想到去优化。优化的⽅
向就是⽤⼀个或者两个状态来表⽰这⼀堆的状态,通常就是⽤数学的⽅式做⼀下等价替换。我们发
现第⼆维是有规律的变化的,因此我们去看看
dp[i][j - v[i]]
这个状态:
dp[i][j-v[i]]=max(dp[i-1][j-v[i]],dp[i-1][j-2*v[i]]+w[i],dp[i-1][j-3*v[i]]+2*w[i]...)
我们发现,把 dp[i][j - v[i]]
加上 w[i]
正好和 dp[i][j]
中除了第⼀项以外的全部
⼀致,因此我们可以修改我们的状态转移⽅程为:
dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])
。
3. 初始化:
我们多加⼀⾏,⽅便我们的初始化,此时仅需将第⼀⾏初始化为 0 即可。因为什么也不选,也能
满⾜体积不⼩于 j 的情况,此时的价值为 0 。
4. 填表顺序:
根据状态转移⽅程,我们仅需从上往下填表即可。
5. 返回值:
根据状态表⽰,返回 dp[n][V]
。
接下来解决第⼆问
第⼆问仅需微调⼀下 dp 过程的五步即可。
因为有可能凑不⻬ j 体积的物品,因此我们把不合法的状态设置为 -1 。
1. 状态表⽰:
dp[i][j]
表⽰:从前 i 个物品中挑选,总体积正好等于 j
,所有的选法中,能挑选出来的
最⼤价值。
2. 状态转移⽅程:
dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])
。
但是在使⽤ dp[i][j - v[i]] 的时候,不仅要判断 j >= v[i]
,⼜要判断 dp[i][j - v[i]]
表⽰的情况是否存在,也就是 dp[i][j - v[i]] != -1
。
3. 初始化:
我们多加⼀⾏,⽅便我们的初始化:
i. 第⼀个格⼦为 0 ,因为正好能凑⻬体积为 0 的背包;
ii. 但是第⼀⾏后⾯的格⼦都是 -1 ,因为没有物品,⽆法满⾜体积⼤于 0 的情况。
4. 填表顺序:
根据状态转移⽅程,我们仅需从上往下填表即可。
5. 返回值:
由于最后可能凑不成体积为 V 的情况,因此返回之前需要特判⼀下。
代码
public void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int V = in.nextInt();
int[] v = new int[n];
int[] w = new int[n];
for (int i = 0; i < n; i++) {
v[i] = in.nextInt();
w[i] = in.nextInt();
}
//多加一行,为了防止下标越界
int[][] dp = new int[n + 1][V + 1];
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= V; j++) {
dp[i][j] = dp[i - 1][j];
if (j - v[i - 1] >= 0) {
dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - v[i - 1]] + w[i - 1]);
}
}
}
System.out.println(dp[n][V]);
int[][] dp1 = new int[n + 1][V + 1];
for (int j = 1; j <= V; j++) {
dp1[0][j] = -1;
}
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= V; j++) {
dp1[i][j] = dp1[i - 1][j];
if (j - v[i - 1] >= 0 && dp1[i - 1][j - v[i - 1]] != -1) {
dp1[i][j] = Math.max(dp1[i][j], dp1[i - 1][j - v[i - 1]] + w[i - 1]);
}
}
}
if (dp1[n][V] == -1) {
System.out.println(0);
} else {
System.out.println(dp1[n][V]);
}
}
}
3. 零钱兑换
题⽬链接
https://leetcode.cn/problems/coin-change/description/
题⽬描述:
给你⼀个整数数组 coins ,表⽰不同⾯额的硬币;以及⼀个整数 amount ,表⽰总⾦额。
计算并返回可以凑成总⾦额所需的 最少的硬币个数 。如果没有任何⼀种硬币组合能组成总⾦额,返
回 -1 。
你可以认为每种硬币的数量是⽆限的。
⽰例 1:
输⼊:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
⽰例 2: 输⼊:coins = [2], amount = 3
输出:-1
⽰例 3:
输⼊:coins = [1], amount = 0
输出:0
提⽰:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
解法(动态规划):
算法思路:
先将问题**「转化」**成我们熟悉的题型。
i. 在⼀些物品中「挑选」⼀些出来,然后在满⾜某个「限定条件」下,解决⼀些问题,⼤概率
是「背包」模型;
ii. 由于每⼀个物品都是⽆限多个的,因此是⼀个「完全背包」问题。
接下来的分析就是基于「完全背包」的⽅式来的。
1. 状态表⽰:
dp[i][j] 表⽰:从前 i 个硬币中挑选,总和正好等于 j ,所有的选法中,最少的硬币个
数。
2. 状态转移⽅程:
线性 dp 状态转移⽅程分析⽅式,⼀般都是根据「最后⼀步」的状况,来分情况讨论。但是最后
⼀个物品能选很多个,因此我们的需要分很多情况:
i. 选 0 个第 i 个硬币:此时相当于就是去前 i - 1 个硬币中挑选,总和正好等于 j 。此时最少的硬币个数为 dp[i- 1][j]
;
ii. 选 1 个第 i 个硬币:此时相当于就是去前 i - 1 个硬币中挑选,总和正好等于 j - v[i]
。因为挑选了⼀个 i 硬币,此时最少的硬币个数为 dp[i - 1][j - coins[i]] + 1
;
iii. 选 2 个第 i 个硬币:此时相当于就是去前 i - 1 个硬币中挑选,总和正好等于 j - 2 * coins 。因为挑选了两个 i 硬币,此时最少的硬币个数为 dp[i - 1][j - 2 * coins[i]] + 2
;
iv. …
结合我们在完全背包⾥⾯的优化思路,我们最终得到的状态转移⽅程为:
dp[i][j] = min(dp[i - 1][j], dp[i][j - coins[i]] + 1)
。
这⾥教给⼤家⼀个技巧,就是相当于把第⼆种情况 dp[i - 1][j - coins[i]] + 1
⾥
⾯的 i - 1 变成 i 即可。
3. 初始化:
初始化第⼀⾏即可。
这⾥因为取 min ,所以我们可以把⽆效的地⽅设置成⽆穷⼤ (0x3f3f3f3f)
因为这⾥要求正好凑成总和为 j ,因此,需要把第⼀⾏除了第⼀个位置的元素,都设置成⽆穷
⼤。
4. 填表顺序:
根据「状态转移⽅程」,我们仅需「从上往下」填表即可。
5. 返回值:
根据「状态表⽰」,返回 dp[n][V] 。但是要特判⼀下,因为有可能凑不到。
代码
class Solution {
public int coinChange(int[] coins, int amount) {
int n = coins.length, INF = 0x3f3f3f3f;
int[][] dp = new int[n+1][amount+1];
for(int j = 1; j <= amount; j++)dp[0][j] = INF;
for(int i = 1; i <= n; i++){
for(int j = 0; j <= amount; j++){
dp[i][j] = dp[i-1][j];
if(j-coins[i-1]>= 0){
dp[i][j] = Math.min(dp[i][j], dp[i][j - coins[i - 1]] + 1);
}
}
}
return dp[n][amount]>= INF?-1:dp[n][amount];
}
}
2.零钱兑换II
题⽬链接
https://leetcode.cn/problems/coin-change-ii/description/
题⽬描述
给你⼀个整数数组 coins 表⽰不同⾯额的硬币,另给⼀个整数 amount 表⽰总⾦额。
请你计算并返回可以凑成总⾦额的硬币组合数。如果任何硬币组合都⽆法凑出总⾦额,返回 0 。
假设每⼀种⾯额的硬币有⽆限个。
题⽬数据保证结果符合 32 位带符号整数。
⽰例 1:
输⼊:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种⽅式可以凑成总⾦额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
⽰例 2: 输⼊:amount = 3, coins = [2]
输出:0
解释:只⽤⾯额 2 的硬币不能凑成总⾦额 3 。
⽰例 3:
输⼊:amount = 10, coins = [10]
输出:1
提⽰:
1 <= coins.length <= 300
1 <= coins[i] <= 5000
coins 中的所有值 互不相同
0 <= amount <= 5000
解法(动态规划):
算法思路:
先将问题「转化」成我们熟悉的题型。
i. 在⼀些物品中「挑选」⼀些出来,然后在满⾜某个「限定条件」下,解决⼀些问题,⼤概率
是背包模型;
ii. 由于每⼀个物品都是⽆限多个的,因此是⼀个「完全背包」问题。
接下来的分析就是基于「完全背包」的⽅式来的。
1. 状态表⽰:
dp[i][j] 表⽰:从前 i 个硬币中挑选,总和正好等于 j ,⼀共有多少种选法。
2. 状态转移⽅程:
线性 dp 状态转移⽅程分析⽅式,⼀般都是「根据最后⼀步」的状况,来分情况讨论。但是最后
⼀个物品能选很多个,因此我们的需要分很多情况:
i. 选 0 个第 i 个硬币:此时相当于就是去前 i - 1 个硬币中挑选,总和正好等于 j 。
此时最少的硬币个数为 dp[i - 1][j]
;
ii. 选 1 个第 i 个硬币:此时相当于就是去前 i - 1 个硬币中挑选,总和正好等于 j - v[i]
。因为挑选了⼀个 i 硬币,此时最少的硬币个数为 dp[i - 1][j - coins[i]] + 1
;
iii. 选 2 个第 i 个硬币:此时相当于就是去前 i - 1 个硬币中挑选,总和正好等于 j - 2 * coins
。因为挑选了两个 i 硬币,此时最少的硬币个数为 dp[i - 1][j - 2 *zcoins[i]] + 2
;
iv. …
结合我们在完全背包⾥⾯的「优化思路」,我们最终得到的状态转移⽅程为:
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i]] + 1
。
这⾥教给⼤家⼀个技巧,就是相当于把第⼆种情况 dp[i - 1][j - coins[i]] + 1
⾥⾯的 i - 1 变成 i 即可。
3. 初始化:
初始化第⼀⾏即可。
第⼀⾏表⽰没有物品,没有物品正好能凑能和为 0 的情况。因此 dp[0][0] = 1
,其余位置都
是 0 种情况。
4. 填表顺序:
根据「状态转移⽅程」,我们仅需「从上往下」填表即可。
5. 返回值:
根据「状态表⽰」,返回 dp[n][V]
。
代码
class Solution {
public int change(int amount, int[] coins) {
int n = coins.length;
int[][] dp = new int[n+1][amount+1];
dp[0][0]=1;
for(int i = 1; i <= n; i++){
for(int j = 0; j <= amount; j++){
dp[i][j]+=dp[i-1][j];
if(j-coins[i-1]>=0){
dp[i][j]+=dp[i][j-coins[i-1]];
}
}
}
return dp[n][amount];
}
}
4. 完全平⽅数
题⽬链接
https://leetcode.cn/problems/perfect-squares/description/
题⽬描述
给你⼀个整数 n ,返回 和为 n 的完全平⽅数的最少数量 。
完全平⽅数 是⼀个整数,其值等于另⼀个整数的平⽅;换句话说,其值等于⼀个整数⾃乘的积。例
如,1、4、9 和 16 都是完全平⽅数,⽽ 3 和 11 不是。
⽰例 1:
输⼊:n = 12
输出:3
解释:
12 = 4 + 4 + 4
⽰例 2:
输⼊:n = 13
输出:2
解释:
13 = 4 + 9
解法(动态规划)
算法思路:这⾥给出⼀个⽤「拆分出相同⼦问题」的⽅式,定义⼀个状态表⽰。(⽤「完全背包」⽅式的解法 就仿照之前的分析模式就好啦~~)
为了叙述⽅便,把和为 n 的完全平⽅数的最少数量简称为「最⼩数量」。 对于 12 这个数,我们分析⼀下如何求它的最⼩数量。▪ 如果 12 本⾝就是完全平⽅数,我们不⽤算了,直接返回 1 ;
▪ 但是 12 不是完全平⽅数,我们试着把问题分解⼀下:
情况⼀:拆出来⼀个 1 ,然后看看 11 的最⼩数量,记为 x1 ;
情况⼆:拆出来⼀个 4 ,然后看看 8 的最⼩数量,记为 x2 ;(为什么拆出来 4 , ⽽不拆出来 2 呢?)
情况三:拆出来⼀个 8 … 其中,我们接下来求 11、8 的时候,其实⼜回到了原来的问题上。 因此,我们可以尝试⽤ dp 的策略,将 1 2 3 4 6 等等这些数的最⼩数量依次保存起来。再求 较⼤的 n 的时候,直接查表,然后找出最⼩数量。
1. 状态表⽰:
dp[i] 表⽰:和为 i 的完全平⽅数的最少数量。
2. 状态转移⽅程:
对于 dp[i] ,根据思路那⾥的分析我们知道,可以根据⼩于等于 i 的所有完全平⽅数 x 进⾏ 划分:
▪ x = 1 时,最⼩数量为:
1 + dp[i - 1] ;
▪ x = 4 时,最⼩数量为:
1 + dp[i - 4] ......
⼀直枚举到 x <= i 为⽌。
为了⽅便枚举完全平⽅数,我们采⽤下⾯的策略: for(int j = 1; j * j <= i; j++)
综上所述,状态转移⽅程为:
dp[i] = min(dp[i], dp[i - j * j] + 1)
3. 初始化:
当 n = 0 的时候,没法拆分,结果为 0 ; 当 n = 1 的时候,显然为 1 。
4. 填表顺序: 从左往右。
5. 返回值:
根据题意,返回 dp[n] 的值
代码
class Solution
{
public int numSquares(int n)
{
int[] dp = new int[n + 1];
dp[1] = 1; // 初始化
for(int i = 2; i <= n; i++) // 枚举每个数
{
dp[i] = 1 + dp[i - 1]; // ⾄少等于 1 + dp[i - 1]
for(int j = 2; j * j <= i; j++) // ⽤⼩于 i 的完全平⽅数划分区间
dp[i] = Math.min(dp[i], dp[i - j * j] + 1); // 拿到所有划分区间内的
}
// 返回结果
return dp[n];
}
}