01背包、完全背包问题几种变式总结,以及多重背包、组合背包模板

目录

1.求有多少种方法能恰好装满背包

1.1装满背包的方法——按排列计算还是按组合计算?

2.最值问题——最少需要几枚硬币,货物的最大价值

2.1最少需要几枚硬币

2.1.1 memset用法注意

3.二维01背包问题

4.多重背包问题

4.1优化前

4.2二进制优化


 

1.求有多少种方法能恰好装满背包

这种情况下我们一般令dp[ j ]的含义为:装满容量为 j 的背包的方法有dp[ j ]种。

因此这种情况的公式都是:dp[ j ] += dp[ j-nums[ i ] ]

1.1装满背包的方法——按排列计算还是按组合计算?

组合与顺序无关,只在乎元素,比如[1,2]和[2,1]是同一个组合;排列与顺序有关,所以[1,2]和[2,1]不是同一个组合。

在解决背包问题时,我们有内外两层循环:

在计算 组合 方法数时,外层循环依次是每一个元素,内层循环是遍历一整个背包;

在计算 排列 方法数时,外层循环依次是每个容量下的背包,内层循环是遍历所有元素。

因为对于计算排列来说:如果外层循环依次遍历每一个元素,那么背包里记录的数据,一定是先记录的nums[ 0 ],再记录的nums[ 1 ],不会出现反过来的情况,也就是只存在[ 1,2 ]不存在[ 2, 1 ],自然而然得到的结果是按组合总数得到的。

而如果外层循环依次是每个容量下的背包,内层循环遍历所有元素,则如果有两个物品,物品一重量为1,物品二重量为2,则当背包容量为3时,会出现dp[3]=dp[1]+物品二value和dp[3]=dp[2]+物品一value这两种情况(dp[i]表示背包容量为i的最大价值)

 计算排列的原理个人觉得比较难理解,但是我们可以通过一点数学的方法来推导整个过程。这里引用LeetCode.377题目的一条评论:f6b4801bff494b5a8cc96b63b94a0349.png

14c3b49c5c194b2699b365d5531d3fd8.jpeg

b17dcff3ffd14e27b3627a2fe039a1fd.jpeg

组合例题:LeetCode.518.零钱兑换II

d2fb6bf348434108b1365f101e03dd68.png

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int dp[5005]={0};
        //dp[j]表示,如果确定有一个元素coins[i],那么有dp[j]种组合数凑成j
        dp[0]=1;
        for(int i=0;i<coins.size();++i)
        {
            for(int j=coins[i];j<=amount;++j)
            {
                dp[j] += dp[j-coins[i]];
            }
        }
        return dp[amount];
    }
};

排列例题:LeetCode.377.组合总和IV

92388b5d10ec4f96830aa9681218702f.png

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        int dp[1005]={0};
        int MAX = 0x7fffffff;
        dp[0] = 1;
        for(int i=1;i<=target;++i)
        {
            for(int j=0;j<nums.size();++j)
            {
                if(i-nums[j]>=0&&dp[i]<MAX-dp[i-nums[j]])
//这里的两个判断条件,前一个必写,后一个视题目数据量大小而定
                dp[i] += dp[i-nums[j]];
            }
        }
        return dp[target];
    }
};

2.最值问题——最少需要几枚硬币,货物的最大价值

2.1最少需要几枚硬币

LeetCode.322.零钱兑换

dc00a5dc91724de08353d28daad890ff.png

 先考虑外层循环依次是背包的容量(需要凑成的总面值),内层循环依次遍历所有面值的硬币的方法

首先将原问题分解成子问题

例如需要凑成 7 块钱,有[1,2,5]三种面值的硬币,求最少的硬币数dp[7],它的子问题是:

(1)需要凑成 7-1=6 块钱,有[1,2,5]三种面值的硬币,求最少的硬币数dp[6]+1;

(2)需要凑成 7-2=5 块钱,有[1,2,5]三种面值的硬币,求最少的硬币数dp[5]+1;

(3)需要凑成 7-5=2 块钱,有[1,2,5]三种面值的硬币,求最少的硬币数dp[2]+1;

而要求dp[7]最小,因此dp[7]要取min{ dp[6]+1,dp[5]+1,dp[2]+1 },得到状态方程如下:

dp[ i ] = min( dp[ i ],dp【i - coins[ j ]】 +1 )

其中 i 表示当前背包的容量

然后就像1.1中例题377组合总数一样,一直递推下去,这样只要直到dp[0](视具体题目进行初始化),就能知道dp[7]的值。由于计算dp[7]时,dp[6],dp[5],dp[2]必须已知,所以从dp[1]开始计算。(视具体初始化情况而定,已经初始化了的元素就没必要再计算一遍了)

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int dp[10005];
        //dp[i]表示凑成 i 块钱最少需要几枚硬币
        memset(dp,0x7f,sizeof(dp));
        dp[0] = 0;
        int len = coins.size();
        for(int i=1;i<=amount;++i)
        {
            for(int j=0;j<len;++j)
            {
                if(i-coins[j]>=0)
                dp[i]=min(dp[i],dp[i-coins[j]]+1);
            }
        }
        return dp[amount]==0x7f7f7f7f?-1:dp[amount];
    }
};

 从理解的角度,上面的代码比较容易理解,在理解了之后我们可以更换顺序来做,这样会更快

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int dp[10001];
        memset(dp,0x7f,sizeof(dp));
        dp[0] = 0;
        int len=coins.size();
        for(int j=0;j<len;++j){
            for(int i=coins[j];i<=amount;++i){
//快在这里的 i 可以从coins[j]开始
                dp[i] = min(dp[i],dp[i-coins[j]]+1);
            }
        }
        return dp[amount]==0x7f7f7f7f?-1:dp[amount];
    }
};

2.1.1 memset用法注意

首先是格式,对数组 a 初始化,格式为:memset( a,x,sizeof(a) ),其中 x 是想要初始化为的数。一般我们取最大值、1、0、-1等。

取“最大值”的方法:memset( a,0x7f,sizeof(a) ),而且这样初始化之后,一个int能达到的值并不是MAX_INT,因为此时一个int为:0x7f7f7f7f,而非0x7fffffff。

原因是:memset是对每1个字节(每8个二进制位)进行初始化。

 

3.二维01背包问题

LeetCode.474.一和零

f29fc27128e6413bbff85d3d5556a209.png

 也就是同时存在两个01背包,一个背包装0,容量是m;另一个背包装1,容量是n。

在之前做01背包问题一维优化的时候,我们提到内层循环中,背包应从最大容量开始逆序遍历,将这个问题转为二维也是一样的(因为如果从0开始遍历,则会覆盖掉前面存入的数据,最后结果就错了),我们定义dp[ i ][ j ]意为m=i,n=j时背包能装下的最大容量。

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        int dp[105][105]={0};
        //dp[i][j]意为有 i 个0,j 个1的情况下,最大子集中元素个数
        
        int len = strs.size();
        for(int k=0;k<len;++k)
        {
            int cnt0=0,cnt1=0;
            for(char c : strs[k])
            {
                if(c == '0') ++cnt0; 
                else ++cnt1;
            }
            for(int i=m;i>=cnt0;--i)
            {
                for(int j=n;j>=cnt1;--j)
                {
                    dp[i][j] = max(dp[i-cnt0][j-cnt1]+1,dp[i][j]);
                }
            }
        }
        return dp[m][n];
    }
};

这里需要注意将计算0、1的个数的循环放在dp循环里一起算,这样就不用专门开两个数组cnt1[ ]和cnt0[ ]用来保存每个字符串中0、1的数量,而且也免去了多余的两层for循环计算。

4.多重背包问题

4.1优化前

ad0ed570820348138b31d49a42c37847.png

由于数据范围比较小,O(N^3)=O(100^3) 也可以不超时,可以先从暴力解法入手,作为过渡。

需要注意的点:

(1)由于每种物品是有规定其能取的上限的,因此需要在之前01背包(而非完全背包,具体原因在第二点)的基础上,再引入一个循环用于遍历某个物品 取0个、取1个……取s个的所有情况。

(2)一维优化后的01背包中,内层循环需要逆序,而一维优化的完全背包中,内层循环无需逆序。在多重背包问题中,内层循环依旧需要逆序,这也是为什么说它是建立在01背包的基础上的。 可以理解为,01背包和多重背包都是某种物品取有限个,而完全背包允许某个物品取无穷多个,只要背包装得下。

#include<iostream>
using namespace std;

int n,m;
int dp[110]={0};

int main()
{
    cin>>n>>m;
    for(int i=0;i<n;++i)
    {
        int v,w,s;
        cin>>v>>w>>s;
        for(int j=m;j>=1;--j)
            for(int k=0;k<=s&&v*k<=j;++k)
                dp[j] = max(dp[j],dp[j-v*k]+w*k);
    }
    cout<<dp[m];
    return 0;
}

4.2二进制优化

63a1ba8f4d86458ebda660b528aa990b.png

这道题是多重背包 I 在数据上的加强。数据量决定了用优化前的做法极大概率会超时。

前面说了,多重背包问题实际上是建立在01背包问题的基础上的,那么我们可以考虑将多重背包再化为01背包(比如一种物品有10件,那就把它当成十件种类不同,但是重量和价值都一样的物品,这样每件物品只能取一次,也就是01背包问题),这样复杂度就能向01背包靠拢了。 

可惜如果只是简单的转化,也是一个O(N^3)的过程。

由此引出了二进制优化的方法。能将原来每件商品的件数 Si 减少到logSi。

#include<iostream>
using namespace std;

int n,m,cnt=0;
int dp[2200]={0};
int w[22000];
int v[22000];

int main()
{
    cin>>n>>m;
    //以下先进行二进制优化过程
    for(int i=0;i<n;++i)
    {
        int a,b,s;
        cin>>a>>b>>s;
//每次进行while循环之前记得把k初始化为 1
        int k=1;
//着重注意下面这个while循环的写法
        while(k<=s)
        {
            cnt++;
            w[cnt]=k*a;
            v[cnt]=k*b;
            s-=k;
            k*=2;
        }
        if(s>0)
        {
            cnt++;
            w[cnt]=a*s;
            v[cnt]=b*s;
        }
    }
//cnt实际上记录的是二进制优化过后,01背包中商品的总件数
    n=cnt;
    //以下进行01背包过程
    for(int i=1;i<=n;++i)
    {
        for(int j=m;j>=w[i];--j)
        {
            dp[j] = max(dp[j],dp[j-w[i]]+v[i]);
        }
    }
    cout<<dp[m];
    return 0;
}

5.组合背包问题

组合背包没有很好的解题方法,只能用三重循环来做,但是其中也有一些注意事项。

3f8ea0ecb7754a47a5bbed43f8d2dcd9.png

 

#include<iostream>
using namespace std;

int N,V;
int dp[110],val[110],wei[110];

int main()
{
    cin>>N>>V;
    for(int i=0;i<N;++i)
    {
        int s;
        cin>>s;
        for(int j=0;j<s;++j) cin>>wei[j]>>val[j];
        for(int j=V;j>0;--j)
            for(int k=0;k<s;++k)
            	if(j>=wei[k])
                	dp[j]=max(dp[j],dp[j-wei[k]]+val[k]);
    }
    cout<<dp[V];
    return 0;
}

第三重循环中的写法需要特别注意。

一开始我写的是这样:

e438d677e8ca4a74be93d7c28de2172f.png

 因为上面提到的多重背包,优化前的写法是:

e3c04851473d4c528681ca5153ee7868.png

这样写能提前break掉,节省一点时间。但这是因为多重背包中,物品件数是依次递增的,因此一旦 v*k>j ,之后k会一直增大,v*k也一定一直大于 j,因此可以直接break掉,能做对且节省时间。

但是组合背包中,输入的物品并不是按重量依次递增的,也就是说,如果背包容量为5,第k-2件物品的重量是6,但是第k-1件物品的重量可能是1,这样一来,如果遇到重量为6的物品就直接break 的话,就无法遍历到第k-1件物品;因此这里不能提前break,而是每件物品都要去判断。 

07a0c2860e8048db8aaf672e6722f5ab.png

 

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 多重背包问题是指在给定容量和物品的价值和重量的情况下,如何最大限度地装入物品,使得总价值最大化的问题。它的模板是:给定N种物品和一个容量为V的背包,每种物品有无限件可用,每件物品的重量是w[i],其价值是v[i]。求解将哪些物品装入背包可使价值总和最大。 ### 回答2: 多重背包问题是一个经典的组合优化问题,它是在0/1背包问题的基础上进行了扩展。在多重背包问题中,每个物品可以被选择的次数不再是1次,而是有一个确定的上限k次(k>1)。我们需要选择一些物品放入背包中,使得它们的总体积不超过背包的容量,并且使得它们的总价值最大化。 要解决多重背包问题,可以使用动态规划的方法。首先,我们定义一个二维数组dp[i][j],其中i表示前i个物品,j表示背包的容量。dp[i][j]表示当只考虑前i个物品、背包容量为j时,能够获取的最大价值。然后,我们可以使用如下的状态转移方程来计算dp[i][j]的值: dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]]+w[i], dp[i-1][j-2v[i]]+2w[i], ..., dp[i-1][j-kv[i]]+kw[i]) 其中,v[i]表示第i个物品的体积,w[i]表示第i个物品的价值,k表示第i个物品的可选次数。上述状态转移方程的意义是,我们可以选择不取第i个物品,或者分别取1次、2次、...、k次第i个物品,选择这些情况下的最大价值。 最后,我们可以通过遍历所有的物品和背包容量,计算出dp[n][m],其中n表示物品的个数,m表示背包的容量。dp[n][m]即为问题的解,表示只考虑前n个物品、背包容量为m时能够获取的最大价值。 综上所述,多重背包问题的解决方法是利用动态规划,通过定义状态转移方程和计算数组dp的值,找到问题的最优解。希望以上介绍对您有所帮助。 ### 回答3: 多重背包问题是常见的背包问题之一,与0-1背包问题完全背包问题类似,但有一些区别。 在多重背包问题中,给定n个物品和一个容量为V的背包,每个物品有两个属性:重量w和价值v。同时,每个物品还有对应的个数限制c,表示该物品的数量最多可以选择c次。 我们需要选择物品放入背包,使得背包的总容量不超过V,同时物品的总价值最大。 多重背包问题可以用动态规划来解决。 我们可以定义一个二维数组dp,其中dp[i][j]表示前i个物品中选择若干个物品放入容量为j的背包时的最大价值。 根据多重背包问题的特点,我们需要对每个物品的个数进行遍历,并依次判断放入背包的个数是否超过c。 具体的状态转移方程为: dp[i][j] = max(dp[i-1][j-k*w[i]] + k*v[i]),其中0 <= k <= min(c[i], j/w[i]) 最后,需要注意的是多重背包问题的时间复杂度较高,为O(N*V*∑(c[i])),其中N是物品的数量,V是背包的容量,∑(c[i])表示物品的个数限制的总和。 总结而言,多重背包问题是在0-1背包问题完全背包问题基础上的一种更复杂的情况,需要对每个物品的个数进行遍历和判断,采用动态规划求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值