题目描述
小T
是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有
n
n
n 个矿石,从
1
1
1 到
n
n
n 逐一编号,每个矿石都有自己的重量
w
i
w_i
wi 以及价值
v
i
v_i
vi 。检验矿产的流程是:
- 给定 m m m 个区间 [ l i , r i ] [l_i,r_i] [li,ri];
- 选出一个参数 W W W;
- 对于一个区间 [ l i , r i ] [l_i,r_i] [li,ri],计算矿石在这个区间上的检验值 y i y_i yi:
y i = ∑ j = l i r i [ w j ≥ W ] × ∑ j = l i r i [ w j ≥ W ] v j y_i=\sum\limits_{j=l_i}^{r_i}[w_j \ge W] \times \sum\limits_{j=l_i}^{r_i}[w_j \ge W]v_j yi=j=li∑ri[wj≥W]×j=li∑ri[wj≥W]vj
其中 j j j 为矿石编号。
这批矿产的检验结果 y y y 为各个区间的检验值之和。即: ∑ i = 1 m y i \sum\limits_{i=1}^m y_i i=1∑myi
若这批矿产的检验结果与所给标准值
s
s
s 相差太多,就需要再去检验另一批矿产。小T
不想费时间去检验另一批矿产,所以他想通过调整参数
W
W
W 的值,让检验结果尽可能的靠近标准值
s
s
s,即使得
∣
s
−
y
∣
|s-y|
∣s−y∣ 最小。请你帮忙求出这个最小值。
输入格式
第一行包含三个整数 n , m , s n,m,s n,m,s,分别表示矿石的个数、区间的个数和标准值。
接下来的 n n n 行,每行两个整数,中间用空格隔开,第 i + 1 i+1 i+1 行表示 i i i 号矿石的重量 w i w_i wi 和价值 v i v_i vi。
接下来的 m m m 行,表示区间,每行两个整数,中间用空格隔开,第 i + n + 1 i+n+1 i+n+1 行表示区间 [ l i , r i ] [l_i,r_i] [li,ri] 的两个端点 l i l_i li 和 r i r_i ri。注意:不同区间可能重合或相互重叠。
输出格式
一个整数,表示所求的最小值。
样例 #1
样例输入 #1
5 3 15
1 5
2 5
3 5
4 5
5 5
1 5
2 4
3 3
样例输出 #1
10
题意
小T作为一名质量监督员负责检验一批矿产的质量。这批矿产有
n个矿石,每个矿石都有自己的重量 w i w_i wi 以及价值 v i v_i vi 。检验的流程是将这些矿石按照给定 m m m 个区间进行检验,每个区间的检验值 y i y_i yi计算方式为该区间内重量大于等于参数 W W W的矿石的价值之和。最终的检验结果 y y y为所有区间检验值的总和。如果检验结果 y y y与给定的标准值 s s s相差太多,就需要重新检验另一批矿产。小T希望通过调整参数 W W W的值,使得检验结果 y y y尽可能靠近标准值 s s s,即使得∣s−y∣最小。因此,需要找到一个最小的
W W W值,使得检验结果与标准值的差异最小。
思路
可以看到:在W取0时,所有的区间内的矿石都可以选上,
而在W大于最大的质量时,所有的矿石都选不上。
然后简单算一下就发现:
W越大,矿石选的越少,W越小,矿石选的越多。
所以,随着W增大,Y值减小;所以:二分的判断条件出来了:
当Y>s 时,需要增大W来减小Y,从而∣Y−s∣变小;
当Y== s时,∣Y−s∣==0;
当Y<s时,需要减小W来增大Y,从而∣Y−s∣变大;
代码
#include<iostream>
using namespace std;
typedef pair<int,int> PII;//存储查询的范围
typedef long long LL;//存储可能较大的数值
const int N = 2e5 + 10, M = 1e6 + 10;
int w[N], v[N], cnt[N];//分别存储每个物品的重量、价值和满足条件的物品数量的累积和
PII q[N];
LL s[N];
int n, m;// n为物品的数量,m为查询的数量
LL S;
LL getY(int mid)
{
//计算Y值
for(int i = 1; i <= n; i++)
{
if(w[i] >= mid)
{
s[i] = v[i], cnt[i] = 1;// 如果物品重量大于等于阈值,计入累积和和数量
}
else{
s[i] = 0, cnt[i] = 0;
}
s[i] += s[i - 1];
cnt[i] += cnt[i - 1];// 更新满足条件的物品数量的累积
}
LL Y = 0;
for(int i = 0; i < m; i++)
{
int x = q[i].first, y = q[i].second;
Y += (cnt[y] - cnt[x - 1]) * (s[y] - s[x - 1]);
}
return Y;
}
int main()
{
scanf("%d%d%lld", &n, &m, &S);
for(int i = 1; i <= n; i++) scanf("%d%d", &w[i], &v[i]);
for(int i = 0; i < m; i++)
{
int x, y;
scanf("%d%d", &x, &y);
q[i] = {x, y};
}
int l = 0, r = 1e6 + 1;
while(l < r)
{
int mid = l + r >> 1;
if(getY(mid) <= S) r = mid;
else l = mid + 1;
}
printf("%lld", min(abs(S - getY(r)), abs(S - getY(r - 1))));
return 0;
}