给定一个正整数 n
,输出外观数列的第 n
项。
「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述。
你可以将其视作是由递归公式定义的数字字符串序列:
countAndSay(1) = "1"
countAndSay(n)
是对countAndSay(n-1)
的描述,然后转换成另一个数字字符串。
前五项如下:
1. 1 2. 11 3. 21 4. 1211 5. 111221 第一项是数字 1 描述前一项,这个数是1
即 “ 一 个 1 ”,记作"11"
描述前一项,这个数是11
即 “ 二 个 1 ” ,记作"21"
描述前一项,这个数是21
即 “ 一 个 2 + 一 个 1 ” ,记作 "1211"
描述前一项,这个数是1211
即 “ 一 个 1 + 一 个 2 + 二 个 1 ” ,记作 "111221"
要 描述 一个数字字符串,首先要将字符串分割为 最小 数量的组,每个组都由连续的最多 相同字符 组成。然后对于每个组,先描述字符的数量,然后描述字符,形成一个描述组。要将描述转换为数字字符串,先将每组中的字符数量用数字替换,再将所有描述组连接起来。
例如,数字字符串 "3322251"
的描述如下图:
示例 1:
输入:n = 1 输出:"1" 解释:这是一个基本样例。
示例 2:
输入:n = 4 输出:"1211" 解释: countAndSay(1) = "1" countAndSay(2) = 读 "1" = 一 个 1 = "11" countAndSay(3) = 读 "11" = 二 个 1 = "21" countAndSay(4) = 读 "21" = 一 个 2 + 一 个 1 = "12" + "11" = "1211"
提示:
1 <= n <= 30
欧克,现在想一下这个思路,说实话,挺有意思的,下面给出一个比较好想的思路,比如1211,一个标记指向1,第二个指向2,计数count = 1,你看2大于1,就只有一个1,两个向后移动,count = 1,同理,当第一个标记指向2后的1,第二个指向最后的1 ,他俩相等,count = 2,这个时候第二个标记到最后了,结束。
public class Solution {
public String countAndSay(int n) {
if (n <= 0) {
return "";
}
String result = "1";
for (int i = 1; i < n; i++) {
StringBuilder sb = new StringBuilder();
int count = 1;
char prev = result.charAt(0);
for (int j = 1; j < result.length(); j++) {
char curr = result.charAt(j);
if (curr == prev) {
count++;
} else {
sb.append(count).append(prev);
count = 1;
prev = curr;
}
}
sb.append(count).append(prev);
result = sb.toString();
}
return result;
}
}