一、概述
自然语言处理(NLP)是人工智能的重要分支,涉及计算机对人类语言的理解、生成和应用。在本文中,我们将聚焦于NLP的三个发展阶段,并探讨各阶段的特点和代表性技术。
二、基于规则的自然语言处理(rule-basedNLP)。
学者利用规则进行机器翻译、情感分析、文本理解和生成的阶段。
三、统计自然语言处理(Statistical NLP)
统计自然语言处理是基于概率和统计模型的方法,通过从大规模语料库中学习语言规律来完成各种任务。学者利用统计方法进行词性标注、句法分析、机器翻译、文本分类和信息检索等任务。
1. 监督学习:就像有一个“老师”在教机器学习。这个“老师”会提供一组 带标签的数据,告诉机器每个输入对应的正确答案是什么。机器通过学习这些数据和标签之间的关系,来预测新的输入对应的结果。
常见的任务:分类(如垃圾邮件分类)、回归(如房价预测)