TripGenie:畅游济南旅行规划助手:团队工作纪实(一)
在数字化转型的浪潮中,旅游业也迎来了新的发展机遇。我们团队致力于开发一款济南景点一体化旅游助手,旨在为用户提供全面、个性化的旅游信息和服务。面对数据不全面和更新不及时的挑战,我们决定采用爬虫技术,从各大网站爬取济南的景点、住宿、美食等信息。
在项目启动阶段,我们组织了多次团队会议,明确了项目的目标和主题。我们希望建立一个平台,不仅提供济南的景点信息,还包括住宿、美食等旅游相关资源。这个平台将成为游客了解济南、规划行程的重要助手。确定了项目主题后,我们开始撰写项目书、申请书、答辩PPT,详细规划了项目的各个方面,包括目标用户、功能需求、技术路线、开发计划和预算等。项目书是指导我们整个开发过程的蓝图。
面对数据获取的难题,我们决定学习并应用爬虫技术。团队成员开始学习爬虫的基础知识,包括HTTP协议、HTML结构、JavaScript动态内容等。我们了解了网站的反爬虫机制,并学习了如何模拟浏览器行为,以绕过这些限制。
在工具选择方面,我们我们选择了Python作为主要开发语言,并引入了一系列爬虫工具:
Requests:用于发送HTTP请求,获取网页内容。
BeautifulSoup 与lxml:用于解析HTML文档,提取所需数据。
- Selenium:用于模拟浏览器行为,处理JavaScript动态生成的内容。
- Pandas:用于数据处理和存储,方便将爬取的数据保存为CSV文件。
我们团队成员分工,分别爬取了大众点评等多个网页,以大众点评为例,我们实施了以下爬虫步骤:
1. 获取URL:找到大众点评上目标数据所在的页面URL。
2. 模拟登录获取Cookie:模拟用户登录,获取Cookie以绕过反爬虫限制。
3. 爬取数据:使用获取的Cookie,爬取目标网页上的数据。
在数据处理阶段,面对不同网站对同一景点可能存在的命名格式差异、文件中不需要的信息,页码与序号与景点名称的统一问题,标题不清晰的CSV文件等问题,进行了讨论与修改。在数据库整合,团队选择使用MySQL进行数据整合。首先,我们将数据导入数据库中,然后计划将坐标与景点、酒店、美食等信息进行合并。我们选择使用`LEFT JOIN`操作来确保即使某些景点在`point`表中没有对应的记录,仍然会显示在结果集中。
```sql
SELECT
h.name AS TouristName,
h.address AS Address,
h.comment AS Comments,
h.picture AS Picture,
h.rating AS Rating,
p.point AS Point
FROM
tourist h
LEFT JOIN
points p ON h.id = p.tourist_id;
通过这一系列的步骤,我们的项目已经取得了显著的进展。从主题确定到数据清理,每个阶段都为项目的成功奠定了坚实的基础。我们期待在接下来的分析和报告阶段中,将这些数据转化为有价值的见解和建议。