a. 程序运行结果
数据读取:程序会读取名为软件22学生详细名单.xls的 Excel 文件,该文件至少包含三个工作表。程序会从每个工作表的第二行开始,读取第六列(索引为 5)的数据,分别存储到sex221、sex222、sex223列表中。
数据统计:对每个列表中的性别数据进行统计,分别计算出男生和女生的数量。
可视化展示:使用pyecharts库绘制柱状图,展示软件 22 级三个班级(假设为 221、222、223)的男女比例情况。最终会生成一个名为柱状图.html的文件,打开该文件可以在浏览器中看到柱状图。
b. 拓展到抖音个性化短视频推荐算法
为了实现精准的个性化推荐,抖音公司需要收集用户的以下数据:
- 基本信息
年龄:不同年龄段的用户兴趣偏好差异较大。例如,年轻人可能更关注时尚、娱乐、游戏等内容,而中老年人可能对健康、养生、历史等内容更感兴趣。通过收集年龄信息,可以为不同年龄段的用户推荐更符合其兴趣的短视频。
性别:男性和女性在兴趣爱好上通常存在差异。男性可能对体育、科技、汽车等内容更感兴趣,而女性可能对美妆、时尚、情感等内容更感兴趣。了解用户性别有助于提高推荐的精准度。
地域:不同地区的用户有不同的文化背景和生活习惯,这会影响他们的兴趣偏好。例如,某些地区的用户可能更关注本地新闻、特色美食等内容。根据用户所在地域推荐相关的短视频,可以增加用户的观看兴趣。
- 行为数据
观看历史:记录用户观看过的短视频的类型、主题、时长等信息。通过分析观看历史,可以了解用户的兴趣偏好,为用户推荐相似类型的短视频。例如,如果用户经常观看美食制作的短视频,那么可以推荐更多美食相关的视频。
点赞、评论和分享行为:用户的点赞、评论和分享行为反映了他们对某个短视频的喜爱程度和兴趣点。抖音可以根据这些行为数据,为用户推荐更多类似受欢迎的短视频。例如,如果用户点赞了一个旅游景点的视频,那么可以推荐更多相关旅游景点的视频。
搜索历史:用户的搜索历史直接反映了他们当前的兴趣需求。抖音可以根据用户的搜索关键词,为用户推荐相关的短视频。例如,如果用户搜索了 “健身教程”,那么可以推荐各种健身教程的短视频。
- 社交数据
关注列表:用户关注的账号通常是他们感兴趣的领域或人物。抖音可以根据用户的关注列表,推荐这些账号发布的新视频,以及与这些账号相关的其他账号的视频。例如,如果用户关注了某个知名美食博主,那么可以推荐该博主的新视频,以及其他美食博主的视频。
好友互动:了解用户与好友之间的互动情况,如共同观看的视频、互相分享的视频等。可以根据好友的兴趣偏好,为用户推荐他们可能感兴趣的短视频。例如,如果用户的好友经常观看宠物相关的视频,那么可以为该用户推荐一些宠物视频。