mysql:excel 表格数据导入 mysql 的快捷方式

(一)表格格式:

1、创建新表、空表或打开有数据表

2、表格以 .csv 形式保存

3、保存表格时,直接选择“是”

—— ——

(二)导入mysql数据库里:

1、随便点个数据库

选择 Table Date Import Wizard 导入 excel 文件

2、选择导入表格路径,然后点击 Next 。

3、选择表格加入那个数据库,再次点击 Next 。

4、看下数据有无问题,没有的话点击Next,然后再点 Next 。

5、上图两项没有显示红叉算是导入成功,再次点击 Next 。

6、最后点击 Finish,完成导入表格步骤。

7、成功导入,没有数据出错。

8、查看表格数据

到此,excel 表格数据导入 mysql 数据库已经成功。

—— ——

(三)其它情况说明:

1:Use existing table 不用特别理会

它会自动跳出或为空都是可以的

2:跳出这个窗口,直接叉掉就好。

脑电情绪识别是一个复杂的任务,通常需要使用深度学习模型来提高准确性。以下是一个简单的脑电情绪识别的示例代码,使用卷积神经网络(CNN)进行特征提取和分类。 首先,我们需要加载数据集。这里我们使用DEAP(Database for Emotion Analysis using Physiological signals)数据集。 ``` import numpy as np import pandas as pd # load data data = pd.read_csv('data/deap/data_preprocessed_python/data.csv') labels = pd.read_csv('data/deap/data_preprocessed_python/labels.csv') ``` 接下来,我们需要对数据进行预处理。在这个例子中,我们将使用前 30 秒的脑电图(EEG)数据,并将其重新采样为 128 Hz。我们还将标签处理为二进制值(高兴/不高兴)。 ``` from scipy import signal # preprocess data def preprocess(data, labels): # select first 30 seconds data = data[:, :, :128*30] # resample to 128 Hz data = signal.resample(data, num=128*30, axis=2) # convert labels to binary (happy/sad) labels = labels.mean(axis=1) labels[labels >= 5] = 1 labels[labels < 5] = 0 return data, labels data, labels = preprocess(data, labels) ``` 接下来,我们可以将数据集划分为训练集和测试集,并使用 CNN 进行特征提取和分类。 ``` import tensorflow as tf from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from sklearn.model_selection import train_test_split # split data into train and test sets X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2) # build CNN model model = tf.keras.models.Sequential([ Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=X_train.shape[1:]), MaxPooling2D(pool_size=(2, 2)), Dropout(0.25), Conv2D(64, kernel_size=(3, 3), activation='relu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.25), Flatten(), Dense(128, activation='relu'), Dropout(0.5), Dense(1, activation='sigmoid') ]) # compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # train model model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_test, y_test)) ``` 最后,我们可以使用测试集来评估模型的准确性。 ``` # evaluate model score = model.evaluate(X_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值