二、递推(与递归相反,先求出子问题再去算出原问题)
1.AcWing 717.简单斐波那契
分析过程
先定义f(1)和f(2)作为边界,然后f(n)=f(n-1)+f(n-2),此题可以直接用滚动数组的雏形来算,用来节省空间
代码实现
#include<iostream>
using namespace std;
int main()
{
int a=0,b=1;
int N=0;
cin>>N;
while(N--)
{
cout<<a<<' ';
int c=a+b;
a=b;
b=c;
}
return 0;
}
2.AcWing 95.费解的开关
分析过程
如果我们枚举第一行确定第一行的开关结果,那我们就可以确定第二行的开关情况,如果第一行第i个位置是关,则第二行第i个位置必须按一下。
①如何枚举第一行的操作
枚举第一行的意义是:不需要在意第一行的灯是灭是暗,只需把第一行的按法枚举一遍,也就是我们说的 “操作”,每个位置都有两种选择,按(用1表示)或者不按(用0表示),遍历这2^5=32种操作引发的情况,每一次再通过res = min(res, step);把最小步数存一下,就能找到最优解。
②turn(x,y)开关的这个操作实现
g[a][b]^=1;这行的代码采用

文章介绍了递推在编程中的应用,如斐波那契数列的计算,通过滚动数组优化空间;探讨了复杂问题如开关操作的递归枚举策略,涉及位运算和时间复杂度分析;还涉及多例编程挑战,如飞行员兄弟和翻硬币问题的解决方案,强调了暴力方法和枚举递推的重要性。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=135646363&d=1&t=3&u=3494d9c011bc411aa94497d8d852d02a)
686

被折叠的 条评论
为什么被折叠?



