#include<iostream>
#include <fstream>
#include <string.h>
using namespace std;
#define MaxSize 1024 // 读入文件的上限
#define OK 1
#define ERROR 0
typedef int Status;
typedef struct wordcnt{ // 统计字符和对应的次数
char ch;
int cnt = 0;
}Count;
typedef struct NumCount{ // 统计次数的外部封装
Count count[MaxSize];
int length = 0;
}NumCount;
typedef struct HTree{ // 哈夫曼树结构
char data;
int weight;
int parent,lchild,rchild;
}HTNode,*HuffmanTree;
typedef struct HCode{ // 编码结构
char data;
char* str;
}*HuffmanCode;
Status ReadData(char *source); // 读入文件
Status WordCount(char *data,NumCount *paraCnt); // 统计次数
Status Show(NumCount *paraCnt); // 展示次数
Status CreateHuffmanTree(HuffmanTree &HT,int length,NumCount cntarray); // 创建哈夫曼树
Status select(HuffmanTree HT,int top,int *s1,int *s2); // 选择权重最小的两个节点
Status CreateHuffmanCode(HuffmanTree HT,HuffmanCode &HC,int length); // 创建哈夫曼编码
Status Encode(char *data,HuffmanCode HC,int length); // 将读入的文件编码,写到txt文件
Status Decode(HuffmanTree HT,int length); //读入编码文件,解码
int main(int argc, char** argv) {
char data[MaxSize];
NumCount Cntarray;
ReadData(data); // 读入数据
WordCount(data,&Cntarray); // 统计次数
// Show(&Cntarray); //可以查看每个单词出现的对应次数
HuffmanTree tree;
CreateHuffmanTree(tree,Cntarray.length,Cntarray); // 建树
HuffmanCode code;
CreateHuffmanCode(tree,code,Cntarray.length); // 创建编码
Encode(data,code,Cntarray.length); // 生成编码文件
Decode(tree,Cntarray.length); // 解码
cout<<"Please view the generated TXT file to check the result"<<endl;
return 0;
}
Status ReadData(char *source)
{
//打开文件读入数据
ifstream infile;
infile.open("in.txt");
cout<<"Reading..."<<endl;
cout<<"the input file is:"<<endl;
infile.getline(source,MaxSize);
cout<<source<<endl;
infile.close();
cout<<endl;
return OK;
}
Status WordCount(char *data,NumCount *paraCnt)
{
int flag;// 标识是否已经记录
int len = strlen(data);
for(int i = 0;i < len;++i)
{
flag = 0;
for(int j = 0;j < paraCnt->length;++j)
{
if(paraCnt->count[j].ch == data[i]) // 若已有记录,直接++
{
++paraCnt->count[j].cnt;
flag = 1;
break;
}
}
if(!flag) // 没有记录,则新增
{
paraCnt->count[paraCnt->length].ch = data[i];
++paraCnt->count[paraCnt->length].cnt;
++paraCnt->length;
}
}
return OK;
}
Status Show(NumCount *paraCnt)
{
cout<<"the length is "<<paraCnt->length<<endl;
for(int i = 0;i < paraCnt->length;++i)
{
cout<<"The character "<<paraCnt->count[i].ch<<" appears "<<paraCnt->count[i].cnt<<endl;
}
cout<<endl;
return OK;
}
Status CreateHuffmanTree(HuffmanTree &HT,int length,NumCount cntarray)
{
if(length <= 1) return ERROR;
int s1,s2;
int m = length*2-1; // 没有度为1的节点,则总结点是2*叶子节点数-1个
HT = new HTNode[m+1];
for(int i = 1;i <= m;++i) // 初始化
{
HT[i].parent = 0;
HT[i].lchild = 0;
HT[i].rchild = 0;
}
for(int i = 1;i <= length;++i)
{
HT[i].data = cntarray.count[i-1].ch;
HT[i].weight = cntarray.count[i-1].cnt;
}
for(int i = length + 1;i <= m;++i)
{
select(HT,i-1,&s1,&s2); // 从前面的范围里选择权重最小的两个节点
HT[s1].parent = i;
HT[s2].parent = i;
HT[i].lchild = s1;
HT[i].rchild = s2;
HT[i].weight = HT[s1].weight + HT[s2].weight; // 得到一个新节点
}
return OK;
}
Status select(HuffmanTree HT,int top,int *s1,int *s2)
{
int min = INT_MAX;
for(int i = 1;i <= top;++i) // 选择没有双亲的节点中,权重最小的节点
{
if(HT[i].weight < min && HT[i].parent == 0)
{
min = HT[i].weight;
*s1 = i;
}
}
min = INT_MAX;
for(int i = 1;i <= top;++i) // 选择没有双亲的节点中,权重次小的节点
{
if(HT[i].weight < min && i != *s1 && HT[i].parent == 0)
{
min = HT[i].weight;
*s2 = i;
}
}
return OK;
}
Status CreateHuffmanCode(HuffmanTree HT,HuffmanCode &HC,int length)
{
HC = new HCode[length+1];
char *cd = new char[length]; // 存储编码的临时空间
cd[length-1] = '\0'; // 方便之后调用strcpy函数
int c,f,start;
for(int i = 1;i <= length;++i)
{
start = length-1; // start表示编码在临时空间内的起始下标,由于是从叶子节点回溯,所以是从最后开始
c = i;
f = HT[c].parent;
while(f != 0)
{
--start; // 由于是回溯,所以从临时空间的最后往回计
if(HT[f].lchild == c)
cd[start] = '0';
else
cd[start] = '1';
c = f;
f = HT[c].parent;
}
HC[i].str = new char[length-start]; // 最后,实际使用的编码空间大小是length-start
HC[i].data = HT[i].data;
strcpy(HC[i].str,&cd[start]); // 从实际起始地址开始,拷贝到编码结构中
}
delete cd;
}
Status Encode(char *data,HuffmanCode HC,int length)
{
ofstream outfile;
outfile.open("code.txt");
for(int i = 0;i < strlen(data);++i) // 依次读入数据,查找对应的编码,写入编码文件
{
for(int j = 1;j <= length;++j)
{
if(data[i] == HC[j].data)
{
outfile<<HC[j].str;
}
}
}
outfile.close();
cout<<"the code txt has been written"<<endl;
cout<<endl;
return OK;
}
Status Decode(HuffmanTree HT,int length)
{
char codetxt[MaxSize*length];
ifstream infile;
infile.open("code.txt");
infile.getline(codetxt,MaxSize*length);
infile.close();
ofstream outfile;
outfile.open("out.txt");
int root = 2*length-1; // 从根节点开始遍历
for(int i = 0;i < strlen(codetxt);++i)
{
if(codetxt[i] == '0') root = HT[root].lchild; //为0表示向左遍历
else if(codetxt[i] == '1') root = HT[root].rchild; //为1表示向右遍历
if(HT[root].lchild == 0 && HT[root].rchild == 0) // 如果已经是叶子节点,输出到输出文件中,然后重新回到根节点
{
outfile<<HT[root].data;
root = 2*length-1;
}
}
outfile.close();
cout<<"the output txt has been written"<<endl;
cout<<endl;
return OK;
}
运行结果:
Reading...
the input file is:
- 从文件中读文本;
- 统计字符频次, 并建立字母表;
- 构造 Huffman 树;
- 将文本编码;
- 解码.
给定 n 个权值作为 n 个叶子节点,构造一棵二叉树,若该树的带权路径长度(Weighted Path Length of Tree)达到最小, 称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。 哈夫曼树是带权路径长度最短的树,权值较大的节点离根较近。
哈夫曼树的重要概念
1、路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1
2、结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积
3、树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树
4、WPL最小的二叉树就是赫夫曼树