假设某消息中只包含7个字符{a,b,c,d,e,f,g},这7个字符在消息中出现的次数为{5,24,8,17,34,4,13} ,利用哈夫曼树(最优二叉树)为该消息中的字符构造符合前缀编码要求的不等长编码。各字符的编码长度分别为(A)。
A.a:4,b:2,c:3,d:3,e:2,f:4,g:3
B.a:6,b:2,c:5,d:3,e:1,f:6,g:4
C.a:3,b:3,c:3,d:3,e:3,f:2,g:3
D.a:2,b:6,c:3,d:5,e:6,f:1,g:4
哈弗曼树中,一棵二叉树要使其WPL值最小,必须使权值越大的叶子结点越靠近根结点,而权值越小的叶子结点,越远离根结点。
哈夫曼树从出现频率最小的节点开始画,即从下往上画,题目中{5,24,8,17,34,4,13},最小的两个节点是a的5和g的4,注意小的数要放在左子树,因此,得出
接着重复上面的操作,在{9,24,8,17,34,13}中找到数值最小的两个节点8和9,8放在左子树或右子树都可以