第三次作业

7. 设 G 是群,对任意 n ∈ N , i ∈ [ 0 , n ] , g ∈ G 。证明: g 0 g 1 . . . g n 7.设G是群,对任意n\in N,i\in [0,n],g\in G。证明:g_{0}g_{1}...g_{n} 7.G是群,对任意nN,i[0,n],gG。证明:g0g1...gn
的逆元是 g n − 1 . . . g 1 − 1 g 0 − 1 的逆元是g_{n}^{-1}...g_{1}^{-1}g_{0}^{-1} 的逆元是gn1...g11g01
证明:
G是群,对任意 n ∈ N , i ∈ [ 0 , n ] , g i ∈ G ,则 g i − 1 ∈ G n\in N,i\in [0,n],g_{i}\in G,则g_{i}^{-1}\in G nNi[0,n]giG,则gi1G
群具有封闭性,所以有
g 0 g 1 . . . g n ∈ G , g n − 1 . . . g 1 − 1 g 0 − 1 ∈ G g_{0}g_{1}...g_{n}\in G,g_{n}^{-1}...g_{1}^{-1}g_{0}^{-1}\in G g0g1...gnG,gn1...g11g01G
群还满足结合律,所以
g 0 g 1 . . . g n ⋅ g n − 1 . . . g 1 − 1 g 0 − 1 = g 0 g 1 . . . ( g n ⋅ g n − 1 ) . . . g 1 − 1 g 0 − 1 = e g_{0}g_{1}...g_{n}·g_{n}^{-1}...g_{1}^{-1}g_{0}^{-1} =g_{0}g_{1}...(g_{n}·g_{n}^{-1})...g_{1}^{-1}g_{0}^{-1}=e g0g1...gngn1...g11g01=g0g1...(gngn1)...g11g01=e
g n − 1 . . . g 1 − 1 g 0 − 1 ⋅ g 0 g 1 . . . g n = g n − 1 . . . g 1 − 1 ( g 0 − 1 ⋅ g 0 ) g 1 . . . g n = e g_{n}^{-1}...g_{1}^{-1}g_{0}^{-1}·g_{0}g_{1}...g_{n}=g_{n}^{-1}...g_{1}^{-1}(g_{0}^{-1}·g_{0})g_{1}...g_{n}=e gn1...g11g01g0g1...gn=gn1...g11(g01g0)g1...gn=e
g 0 g 1 . . . g n g_{0}g_{1}...g_{n} g0g1...gn的逆元是 g n − 1 . . . g 1 − 1 g 0 − 1 g_{n}^{-1}...g_{1}^{-1}g_{0}^{-1} gn1...g11g01

8. 证明:任意群 G 的两个子群的交集也是群 G 的子群 8.证明:任意群G的两个子群的交集也是群G的子群 8.证明:任意群G的两个子群的交集也是群G的子群
证明:
设群 G 1 、 G 2 G_{1}、G_{2} G1G2是群G的两个子群,H是 G 1 、 G 2 G_{1}、G_{2} G1G2的交集,则H也是群G的子集
那么,要证明H是群G的子群,只需证明以下两个条件:
若 a , b ∈ H ,则 a b ∈ H 。 若a,b\in H,则ab\in H。 abH,则abH
若 a ∈ H ,则 a − 1 ∈ H 若a\in H,则a^{-1}\in H aH,则a1H
下面进行证明:
取任意 a , b ∈ H a,b\in H abH,则 a , b ∈ G 1 a,b\in G_{1} abG1,群G_{1}具有封闭性,所以
a b ∈ G 1 ab\in G_{1} abG1
同理, a , b ∈ G 2 a,b\in G_{2} abG2 a b ∈ G 1 ab\in G_{1} abG1
所以, a b ∈ H ab\in H abH
a ∈ H a\in H aH,则 a ∈ G 1 , G 1 a\in G_{1},G_{1} aG1G1中存在a的逆元 a 1 a_{1} a1; a ∈ G 2 , G 2 a\in G_{2},G_{2} aG2G2中存在a的逆元 a 2 a_{2} a2
a的逆元只有一个, a − 1 = a 1 = a 2 ∈ H a^{-1}=a_{1}=a_{2}\in H a1=a1=a2H
得证
即任意群G的两个子群的交集也是群G的子群

9. 证明或证伪:任意群 G 的两个子群的并集也是群 G 的子群。 9.证明或证伪:任意群 G 的两个子群的并集也是群 G 的子群。 9.证明或证伪:任意群G的两个子群的并集也是群G的子群。
解:上述命题是假命题,下面举出反例:
群G={ e , a , b , a − 1 , b − 1 , a b , b a , a − 1 b − 1 , b − 1 a − 1 e,a,b,a^{-1},b^{-1},ab,ba,a^{-1}b^{-1},b^{-1}a^{-1} e,a,b,a1,b1,ab,ba,a1b1,b1a1},群 G 1 G_{1} G1={ e , a , a − 1 e,a,a^{-1} e,a,a1},群 G 2 G_{2} G2={ e , b , b − 1 e,b,b^{-1} e,b,b1}
G 1 、 G 2 G_{1}、G_{2} G1G2是群G的两个子群,设H是 G 1 、 G 2 G_{1}、G_{2} G1G2的并集,则H是G的子集
取 a ∈ G 1 , b ∈ G 2 , 则 a , b ∈ H ,但 a b 不在 H 中 取a\in G_{1},b\in G_{2},则a,b\in H,但ab不在H中 aG1,bG2,a,bH,但ab不在H
这违反了命题6.8:
若群 G 的非空子集 H 是 G 的子群,当且仅当 H 同时满足以下条件: 若群 G 的非空子集 H 是 G 的子群,当且仅当 H 同时满足以下条件: 若群G的非空子集HG的子群,当且仅当H同时满足以下条件:
若 a , b ∈ H ,则 a b ∈ H 若a,b\in H,则ab\in H a,bH,则abH
若 a ∈ H ,则 a − 1 ∈ H 若a\in H,则a^{-1}\in H aH,则a1H
即原命题是假命题

10.G 是阿贝尔群,H 和 K 是 G 的子群。请证明HK={ h k : h ∈ H , k ∈ K hk:h\in H,k\in K hk:hH,kK}是群G的子群。如果 G 不是阿贝尔群,结论是否依然成立?
证明: 任取 h ∈ H , k ∈ K , 有 h , k ∈ G , h k ∈ H K 任取h\in H,k\in K,有h,k\in G,hk\in HK 任取hHkK,hkGhkHK
群 G 有封闭性,所以 h k ∈ G ,即 H K 是 G 的子集 群G有封闭性,所以hk\in G,即HK是G的子集 G有封闭性,所以hkG,即HKG的子集
要证明HK是群G的子群,只需证明以下条件:
若 a , b ∈ H ,则 a b ∈ H 若a,b\in H,则ab\in H a,bH,则abH
若 a ∈ H ,则 a − 1 ∈ H 若a\in H,则a^{-1}\in H aH,则a1H
下面进行证明:
任取 h 1 , h 2 ∈ H , k 1 , k 2 ∈ K h_{1},h_{2}\in H,k_{1},k_{2}\in K h1,h2Hk1,k2K,则
h 1 k 1 , h 2 k 2 ∈ H K h_{1}k_{1},h_{2}k_{2}\in HK h1k1,h2k2HK
而群G是阿贝尔群,则有
h 1 k 1 ⋅ h 2 k 2 = h 1 h 2 k 1 k 2 h_{1}k_{1}·h_{2}k_{2}=h_{1}h_{2}k_{1}k_{2} h1k1h2k2=h1h2k1k2
h 1 h 2 ∈ H , k 1 k 2 ∈ K ,所以 h 1 h 2 k 1 k 2 ∈ H K h_{1}h_{2}\in H,k_{1}k_{2}\in K,所以h_{1}h_{2}k_{1}k_{2}\in HK h1h2Hk1k2K,所以h1h2k1k2HK
h 1 k 1 ⋅ h 2 k 2 ∈ H K h_{1}k_{1}·h_{2}k_{2}\in HK h1k1h2k2HK
h 1 k 1 ⋅ h 1 − 1 k 1 − 1 = h 1 h 1 − 1 k 1 k 1 − 1 = e h_{1}k_{1}·h_{1}^{-1}k_{1}^{-1}=h_{1}h_{1}^{-1}k_{1}k_{1}^{-1}=e h1k1h11k11=h1h11k1k11=e
h 1 − 1 k 1 − 1 ⋅ h 1 k 1 = h 1 h 1 − 1 k 1 k 1 − 1 = e h_{1}^{-1}k_{1}^{-1}·h_{1}k_{1}=h_{1}h_{1}^{-1}k_{1}k_{1}^{-1}=e h11k11h1k1=h1h11k1k11=e
所以, h 1 − 1 k 1 − 1 是 h 1 k 1 的逆元 h_{1}^{-1}k_{1}^{-1}是h_{1}k_{1}的逆元 h11k11h1k1的逆元
h 1 − 1 ∈ H , k 1 − 1 ∈ K ,即 h 1 − 1 k 1 − 1 ∈ H K h_{1}^{-1}\in H,k_{1}^{-1}\in K,即h_{1}^{-1}k_{1}^{-1}\in HK h11Hk11K,即h11k11HK
得证
即HK={ h k : h ∈ H , k ∈ K hk:h\in H,k\in K hk:hH,kK}是群G的子群。

若群G不是阿贝尔群,则式子
h 1 k 1 ⋅ h 2 k 2 = h 1 h 2 k 1 k 2 h_{1}k_{1}·h_{2}k_{2}=h_{1}h_{2}k_{1}k_{2} h1k1h2k2=h1h2k1k2

h 1 k 1 ⋅ h 1 − 1 k 1 − 1 = h 1 h 1 − 1 k 1 k 1 − 1 h_{1}k_{1}·h_{1}^{-1}k_{1}^{-1}=h_{1}h_{1}^{-1}k_{1}k_{1}^{-1} h1k1h11k11=h1h11k1k11

h 1 − 1 k 1 − 1 ⋅ h 1 k 1 = h 1 h 1 − 1 k 1 k 1 − 1 h_{1}^{-1}k_{1}^{-1}·h_{1}k_{1}=h_{1}h_{1}^{-1}k_{1}k_{1}^{-1} h11k11h1k1=h1h11k1k11
不成立,上述命题无法证明。
即群G不是阿贝尔群时,上述命题不成立。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值