CINTA 第七次作业

第七次作业 第七次作业 第七次作业
4. 证明命题 11.4 4.证明命题11.4 4.证明命题11.4
证明:命题 11.4 表述为: 证明:命题11.4表述为: 证明:命题11.4表述为:
设 p 是奇素数, a , b ∈ Z 且不被 p 整除。则有 设p是奇素数,a,b\in Z且不被p整除。则有 p是奇素数,abZ且不被p整除。则有
1. 如果 a ≡ b ( m o d p ) ,则 ( a p ) = ( b p ) ; 1.如果a\equiv b\pmod p,则(\frac{a}{p})=(\frac{b}{p}); 1.如果ab(modp),则(pa)=(pb)
2. ( a p ) ( b p ) = ( a b p ) ; 2.(\frac{a}{p})(\frac{b}{p})=(\frac{ab}{p}); 2.(pa)(pb)=(pab)
3. ( a 2 p ) = 1 。 3.(\frac{a^{2}}{p})=1。 3.(pa2)=1
先证明 1 :因为 a ∈ Z 且不被 p 整除,所以 ( a p ) = 1 或 − 1 先证明1:因为a\in Z且不被p整除,所以(\frac{a}{p})=1或-1 先证明1:因为aZ且不被p整除,所以(pa)=11
( a p ) = 1 时,存在 x 1 ,使得 x 1 2 ≡ a ( m o d p ) ,而 a ≡ b ( m o d p ) (\frac{a}{p})=1时,存在x_{1},使得x_{1}^{2}\equiv a\pmod p,而a\equiv b\pmod p (pa)=1时,存在x1,使得x12a(modp),而ab(modp)
所以 x 1 2 ≡ b ( m o d p ) , ( b p ) = 1 = ( a p ) 所以x_{1}^{2}\equiv b\pmod p,(\frac{b}{p})=1=(\frac{a}{p}) 所以x12b(modp)(pb)=1=(pa)
同理, ( a p ) = − 1 时,不存在 x ,使得 x 2 ≡ a ( m o d p ) ,而 a ≡ b ( m o d p ) 同理,(\frac{a}{p})=-1时,不存在x,使得x^{2}\equiv a\pmod p,而a\equiv b\pmod p 同理,(pa)=1时,不存在x,使得x2a(modp),而ab(modp)
同样不存在 x 2 ≡ b ( m o d p ) ,所以 ( b p ) = − 1 = ( a p ) 同样不存在x^{2}\equiv b\pmod p,所以(\frac{b}{p})=-1=(\frac{a}{p}) 同样不存在x2b(modp),所以(pb)=1=(pa)
再证明 2 :若 a , b 都是模 p 的 Q R ,则 ( a p ) ( b p ) = 1 再证明2:若a,b都是模p的QR,则(\frac{a}{p})(\frac{b}{p})=1 再证明2:若ab都是模pQR,则(pa)(pb)=1
Q R ∗ Q R = Q R ,所以 a b 也是模 p 的 Q R , ( a b p ) = 1 = ( a p ) ( b p ) QR*QR=QR,所以ab也是模p的QR,(\frac{ab}{p})=1=(\frac{a}{p})(\frac{b}{p}) QRQR=QR,所以ab也是模pQR(pab)=1=(pa)(pb)
若 a , b 中一个是 Q R ,一个是 Q N R ,则 ( a p ) ( b p ) = − 1 若a,b中一个是QR,一个是QNR,则(\frac{a}{p})(\frac{b}{p})=-1 ab中一个是QR,一个是QNR,则(pa)(pb)=1
Q R ∗ Q N R = Q N R ,所以 a b 不是模 p 的 Q R , ( a b p ) = − 1 = ( a p ) ( b p ) QR*QNR=QNR,所以ab不是模p的QR,(\frac{ab}{p})=-1=(\frac{a}{p})(\frac{b}{p}) QRQNR=QNR,所以ab不是模pQR(pab)=1=(pa)(pb)
若 a , b 都是模 p 的 Q N R ,则 ( a p ) ( b p ) = 1 若a,b都是模p的QNR,则(\frac{a}{p})(\frac{b}{p})=1 ab都是模pQNR,则(pa)(pb)=1
Q N R ∗ Q N R = Q R ,所以 a b 是模 p 的 Q R , ( a b p ) = 1 = ( a p ) ( b p ) QNR*QNR=QR,所以ab是模p的QR,(\frac{ab}{p})=1=(\frac{a}{p})(\frac{b}{p}) QNRQNR=QR,所以ab是模pQR(pab)=1=(pa)(pb)
再证明 3 :根据 2 ,则 ( a 2 p ) = ( a p ) ( a p ) 再证明3:根据2,则(\frac{a^{2}}{p})=(\frac{a}{p})(\frac{a}{p}) 再证明3:根据2,则(pa2)=(pa)(pa)
若 a 是模 p 的 Q R ,则 ( a 2 p ) = 1 ∗ 1 = 1 若a是模p的QR,则(\frac{a^{2}}{p})=1*1=1 a是模pQR,则(pa2)=11=1
若 a 是模 p 的 Q N R ,则 ( a 2 p ) = ( − 1 ) ∗ ( − 1 ) = 1 若a是模p的QNR,则(\frac{a^{2}}{p})=(-1)*(-1)=1 a是模pQNR,则(pa2)=(1)(1)=1
所以, ( a 2 p ) = 1 。 所以,(\frac{a^{2}}{p})=1。 所以,(pa2)=1

5. 给出推论 11.1 的完整证明。 5.给出推论11.1的完整证明。 5.给出推论11.1的完整证明。
因为 p ≡ 1 ( m o d 4 ) 意味着存在 k ∈ Z 使得 p = 4 k + 1 。根据欧拉准则, 因为p\equiv 1\pmod{4}意味着存在k\in Z使得p=4k+1。根据欧拉准则, 因为p1(mod4)意味着存在kZ使得p=4k+1。根据欧拉准则,
( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 ≡ ( − 1 ) ( 4 k + 1 − 1 ) / 2 ≡ 1 ( m o d p ) (\frac{-1}{p})\equiv (-1)^{(p-1)/2}\equiv (-1)^{(4k +1-1)/2}\equiv 1\pmod p (p1)(1)(p1)/2(1)(4k+11)/21(modp)
而 p ≡ − 1 ( m o d 4 ) 意味着存在 k ∈ Z 使得 p = 4 k − 1 。根据欧拉准则, 而p\equiv -1\pmod{4}意味着存在k\in Z使得p=4k-1。根据欧拉准则, p1(mod4)意味着存在kZ使得p=4k1。根据欧拉准则,
( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 ≡ ( − 1 ) ( 4 k − 1 − 1 ) / 2 ≡ − 1 ( m o d p ) (\frac{-1}{p})\equiv (-1)^{(p-1)/2}\equiv (-1)^{(4k -1-1)/2}\equiv -1\pmod p (p1)(1)(p1)/2(1)(4k11)/21(modp)
得证。 得证。 得证。

6. 设 p 是奇素数,请证明 Z p ∗ 的所有生成元都是模 p 的二次非剩余。 6.设 p 是奇素数,请证明 Z_{p}^{*}的所有生成元都是模 p 的二次非剩余。 6.p是奇素数,请证明Zp的所有生成元都是模p的二次非剩余。
证明:设 g 是 Z p ∗ 的任意一个生成元,群 < g > 的阶为 p − 1 。 证明:设g是Z_{p}^{*}的任意一个生成元,群<g>的阶为p-1。 证明:设gZp的任意一个生成元,群<g>的阶为p1
不妨设 g 是模 p 的二次剩余。那么,存在 x 1 ∈ Z ,使得 x 1 2 ≡ g ( m o d p ) 不妨设g是模 p 的二次剩余。那么,存在x_{1}\in Z,使得x_{1}^{2}\equiv g\pmod p 不妨设g是模p的二次剩余。那么,存在x1Z,使得x12g(modp)
根据欧拉定理, x 1 p − 1 ≡ 1 ( m o d p ) , 那么 g ( p − 1 ) / 2 ≡ x 1 p − 1 ≡ 1 ( m o d p ) ,即 根据欧拉定理,x_{1}^{p-1}\equiv 1\pmod p,那么g^{(p-1)/2}\equiv x_{1}^{p-1}\equiv 1\pmod p,即 根据欧拉定理,x1p11(modp),那么g(p1)/2x1p11(modp),即
群 < g > 的阶为 ( p − 1 ) / 2 ,矛盾,所以 Z p ∗ 的所有生成元都是模 p 的二次非剩余。 群<g>的阶为(p-1)/2,矛盾,所以Z_{p}^{*}的所有生成元都是模 p 的二次非剩余。 <g>的阶为(p1)/2,矛盾,所以Zp的所有生成元都是模p的二次非剩余。

  • 13
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,这里是50种不同国家的语言表达“我爱你”: 1. English - I love you 2. Spanish - Te quiero 3. French - Je t'aime 4. German - Ich liebe Dich 5. Italian - Ti amo 6. Portuguese - Eu te amo 7. Russian - Ya lyublyu tebya 8. Chinese (Mandarin) - Wo ai ni 9. Japanese - Aishiteru 10. Korean - Sarang hae 11. Arabic - Ana behibak (to a male) / Ana behibek (to a female) 12. Dutch - Ik hou van je 13. Danish - Jeg elsker dig 14. Swedish - Jag älskar dig 15. Norwegian - Jeg elsker deg 16. Finnish - Minä rakastan sinua 17. Polish - Kocham Cię 18. Czech - Miluji Tě 19. Hungarian - Szeretlek 20. Bulgarian - Obicham te 21. Greek - S'ayapo 22. Turkish - Seni seviyorum 23. Romanian - Te iubesc 24. Croatian - Volim te 25. Serbian - Volim te 26. Slovenian - Ljubim te 27. Slovak - Milujem Ťa 28. Estonian - Ma armastan sind 29. Latvian - Es tevi mīlu 30. Lithuanian - Aš tave myliu 31. Icelandic - Ég elska þig 32. Albanian - Te dua 33. Thai - Phom rak khun (to a male) / Chan rak khun (to a female) 34. Vietnamese - Anh ye^u em (to a female) / Em ye^u anh (to a male) 35. Indonesian - Saya cinta padamu 36. Filipino - Mahal kita 37. Hindi - Main tumse pyar karta hoon 38. Bengali - Ami tomake bhalobashi 39. Urdu - Main tumse muhabbat karta hoon 40. Marathi - Me tujhe pyaar kartaa hoo 41. Punjabi - Main tere pyar da haan 42. Telugu - Nenu ninnu premisthunnanu 43. Tamil - Naan unnai kaadhalikken 44. Malayalam - Njan ninnodenikkoo 45. Kannada - Naanu ninna preetisuttene 46. Gujrati - Hu tane pyar karoo chu 47. Nepali - Ma timilai maya garchu 48. Sinhala - Mama oyata arderyi 49. Burmese - Chit pa de 50. Mongolian - Bi chamd hairtai
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值