CINTA 第八次作业

第八次作业 第八次作业 第八次作业
1. 如果环 R 带乘法单位元 1 ,对任意 a ∈ R ,请证明 − a = ( − 1 ) a 。 1.如果环R带乘法单位元1,对任意a\in R,请证明-a=(-1)a。 1.如果环R带乘法单位元1,对任意aR,请证明a=(1)a
证明:环 R 带乘法单位元 1 ,所以 a = a 1 = 1 a ,则有 − a = − 1 a 证明:环R带乘法单位元1,所以a=a1=1a,则有-a=-1a 证明:环R带乘法单位元1,所以a=a1=1a,则有a=1a
又环 R 在乘法上满足结合律,所以 − a = ( − 1 ) a 又环R在乘法上满足结合律,所以-a=(-1)a 又环R在乘法上满足结合律,所以a=(1)a

2. 如果任取环 R 中的元素 x 都满足 x 2 = x ,请证明环 R 是交换环。 2.如果任取环R中的元素x都满足x^{2}=x,请证明环R是交换环。 2.如果任取环R中的元素x都满足x2=x,请证明环R是交换环。
证明:要证明环 R 是交换环,则要证明 R 在乘法上满足交换律。 证明:要证明环R是交换环,则要证明R在乘法上满足交换律。 证明:要证明环R是交换环,则要证明R在乘法上满足交换律。
任取 a , b ∈ R ,有 ( a + b ) 2 = a 2 + b 2 + a b + b a = a + b , 任取a,b\in R,有(a+b)^{2}=a^{2}+b^{2}+ab+ba=a+b, 任取abR,有(a+b)2=a2+b2+ab+ba=a+b
而 a 2 = a , b 2 = b ,所以 a + b + a b + b a = a + b ,即 a b = − b a 而a^{2}=a,b^{2}=b,所以a+b+ab+ba=a+b,即ab=-ba a2=ab2=b,所以a+b+ab+ba=a+b,即ab=ba
那么下面只需证明 − b a = b a 。 那么下面只需证明-ba=ba。 那么下面只需证明ba=ba
因为 ( − b a ) 2 = ( − b a ) ( − b a ) = ( b a ) 2 因为(-ba)^{2}=(-ba)(-ba)=(ba)^{2} 因为(ba)2=(ba)(ba)=(ba)2
同时, ( − b a ) 2 = − b a , ( b a ) 2 = b a ,所以 − b a = b a 同时,(-ba)^{2}=-ba,(ba)^{2}=ba,所以-ba=ba 同时,(ba)2=ba(ba)2=ba,所以ba=ba
即 a b = b a ,环 R 是交换环。 即ab=ba,环R是交换环。 ab=ba,环R是交换环。

3. 请解释为什么 Z n 在加法上的子群都是 Z n 的子环。 3.请解释为什么Z_{n}在加法上的子群都是Z_{n}的子环。 3.请解释为什么Zn在加法上的子群都是Zn的子环。
证明:设 R 是 Z n 在加法上的子群,则 R ≠ ∅ 。 证明:设R是Z_{n}在加法上的子群,则R\neq \emptyset。 证明:设RZn在加法上的子群,则R=
任取 a , b ∈ R , a b 相当于 a 个 b 相加,根据加法群的封闭性,显然 a b ∈ R 任取a,b\in R,ab相当于a个b相加,根据加法群的封闭性,显然ab\in R 任取abRab相当于ab相加,根据加法群的封闭性,显然abR
b 的逆元为 − b ∈ R , 由封闭性, a − b ∈ R 。 b的逆元为-b\in R,由封闭性,a-b\in R。 b的逆元为bR,由封闭性,abR
根据命题 12.3 , R 是 Z n 的子环。 根据命题12.3,R是Z_{n}的子环。 根据命题12.3RZn的子环。

14. 证明 2 Z 不与 3 Z 同构。 14.证明2Z不与3Z同构。 14.证明2Z不与3Z同构。
证明:假设 2 Z 与 3 Z 同构,不妨设 ϕ : 2 Z → 3 Z 证明:假设2Z与3Z同构,不妨设\phi :2Z\to 3Z 证明:假设2Z3Z同构,不妨设ϕ2Z3Z
任取 a , b ∈ 2 Z ,则有 ϕ ( a b ) = ϕ ( a ) ⋅ ϕ ( b ) , ϕ ( a + b ) = ϕ ( a ) + ϕ ( b ) 任取a,b\in 2Z,则有\phi(ab)=\phi(a)·\phi(b),\phi(a+b)=\phi(a)+\phi(b) 任取ab2Z,则有ϕ(ab)=ϕ(a)ϕ(b)ϕ(a+b)=ϕ(a)+ϕ(b)
令 a = b = 2 ,则 a b = a + b = 4 ,有 ϕ ( 2 ) ⋅ ϕ ( 2 ) = ϕ ( 2 ) + ϕ ( 2 ) 令a=b=2,则ab=a+b=4,有\phi(2)·\phi(2)=\phi(2)+\phi(2) a=b=2,则ab=a+b=4,有ϕ(2)ϕ(2)=ϕ(2)+ϕ(2)
即 ϕ ( 2 ) ⋅ ( ϕ ( 2 ) − 2 ) = 0 , 所以 ϕ ( 2 ) = 2 或 0 。 即\phi(2)·(\phi(2)-2)=0,所以\phi(2)=2或0。 ϕ(2)(ϕ(2)2)=0,所以ϕ(2)=20
因为 2 ∉ 3 Z ,所以若 ϕ ( 2 ) = 2 ,则 2 不能映射到 3 Z 上,与假设矛盾 因为2\notin 3Z,所以若\phi(2)=2,则2不能映射到3Z上,与假设矛盾 因为2/3Z,所以若ϕ(2)=2,则2不能映射到3Z上,与假设矛盾
而 2 Z 、 3 Z 的加法单位元均为 0 , K e r ϕ = 0 ,即 ϕ ( 2 ) ≠ 0 而2Z、3Z的加法单位元均为0,Ker\phi =0,即\phi(2)\neq 0 2Z3Z的加法单位元均为0Kerϕ=0,即ϕ(2)=0
假设错误, 2 Z 不与 3 Z 同构。 假设错误,2Z不与3Z同构。 假设错误,2Z不与3Z同构。

  • 14
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值