Leetcode - 周赛401

目录

一,3178. 找出 K 秒后拿着球的孩子

二,3179. K 秒后第 N 个元素的值

三,3180. 执行操作可获得的最大总奖励 I

四,3181. 执行操作可获得的最大总奖励 II


一,3178. 找出 K 秒后拿着球的孩子

本题可以直接模拟,遇到 0 或 n - 1 下标,就反转一下。

代码如下:

class Solution {
    public int numberOfChild(int n, int k) {
        int i = 0, t = 1;
        while(k > 0){
            i += t;
            if(i == 0 || i == n-1){
                t *= -1;
            }
            k--;
        }
        return i;
    }
}

二,3179. K 秒后第 N 个元素的值

本题也是一道模拟题,对数组 a 不断的求前缀和,最后返回a[n-1].

代码如下:

class Solution {
    public int valueAfterKSeconds(int n, int k) {
        int MOD = (int)1e9 + 7;
        int[] a = new int[n];
        Arrays.fill(a, 1);
        while(k > 0){
            for(int i=1; i<n; i++){
                a[i] = (a[i] + a[i-1])%MOD;
            }
            k--;
        }
        return a[n-1];
    }
}

三,3180. 执行操作可获得的最大总奖励 I

本题可以使用dfs中的选或不选来做,这里需要知道当前的下标 i ,以及前面所选的数的和 x,需要使用 x < rewardValues[i] 来判断该点能否选。(注意,题目对选择的下标没有进行限制,我们可以先将数组排序,这样就只需要向后遍历)

定义 dfs(i,x):在[0,i)所选择的所有数的和为x时,[i,n]的最大总奖励。

  • 选择 i 下标(必须先满足 x < rewardValues[i]),这时下一个状态就是 dfs(i+1,x+rewardValues[i])
  • 不选 i 下标,下一个状态是 dfs(i+1, x)
  • 结束条件,i == n,返回 0
  • 返回两者的较大值

这里记忆化的时候只需要记录 x 就行,我们只需要关注在当前和为 x 时,能取到的最大值memo[x],代码如下:

class Solution {
    public int maxTotalReward(int[] rewardValues) {
        Arrays.sort(rewardValues);
        memo = new int[4001];
        Arrays.fill(memo, -1);
        return dfs(0,0,rewardValues);
    }
    int[] memo;
    int dfs(int i, int x, int[] rewardValues){
        if(memo[x] != -1) return memo[x];
        if(i == rewardValues.length) return 0;
        int res = dfs(i+1, x, rewardValues);
        if(x < rewardValues[i]){
            res = Math.max(res, dfs(i+1, x+rewardValues[i], rewardValues)+rewardValues[i]);
        }
        return memo[x] = res;
    }
}

递推做法(0-1背包)

定义f[i][j]:能否从前 i 个数得到总奖励为 j

  • 选(满足 j > rewardValues[i] && j-rewardValues[i] < rewardValues[i]),f [ i ][ j ] = f [ i-1 ][ j-rewardValues[i] ]
  • 不选,f [ i ][ j ] = f [ i-1 ][ j ]
  • f [ i ][ j ] = f [ i-1 ][ j ] || f [ i-1 ][ j-rewardValues[i] ]
class Solution {
    public int maxTotalReward(int[] rewardValues) {
        Arrays.sort(rewardValues);
        boolean[] f = new boolean[4001];
        int res  = 0;
        f[0] = true;
        for(int i=0; i<rewardValues.length; i++){
            for(int x=rewardValues[i]-1; x>=0; x--){
                f[x+rewardValues[i]] = f[x+rewardValues[i]] || f[x];
                res = Math.max(res,f[x+rewardValues[i]]?x+rewardValues[i]:res);
            }
        }
        return res;
    }
}

四,3181. 执行操作可获得的最大总奖励 II

该问无法使用上述的做法,还需要进行优化,这里使用的是 bitset优化,它的原理就是直接使用二进制进行上述的或运算,这样就可以优化掉一层for循环。这里二进制位1-表示能得到当前数,0-表示不能得到当前数。代码如下:

//这里使用py是因为更加直接易懂
class Solution:
    def maxTotalReward(self, rewardValues: List[int]) -> int:
        f = 1
        for v in sorted(rewardValues):
            mask = (1 << v) - 1
            # t = (f & mask) << v : 表示如果选择v时,且 x < v 时, x + v 的所有能表示的值
            # f |= t : 为了计算不选择v时,x 的所有能表示的值
            f |= (f & mask) << v
        return f.bit_length() - 1

//Java版
import java.math.BigInteger;

class Solution {
    public int maxTotalReward(int[] rewardValues) {
        BigInteger f = BigInteger.ONE;
        for (int v : Arrays.stream(rewardValues).distinct().sorted().toArray()) {
            BigInteger mask = BigInteger.ONE.shiftLeft(v).subtract(BigInteger.ONE);
            f = f.or(f.and(mask).shiftLeft(v));
        }
        return f.bitLength() - 1;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一叶祇秋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值