二元线性回归的代码实现(python)

数据如下:

代码如下:

import copy
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# 读取excel 并将其向量化为训练数据集x y
data = pd.read_excel("D:\python\python_for_beginner\成本产量数据表.xlsx", head=None, index_col=None, usecols='B' )
x_train = np.asarray(data.stack())
print(x_train)
data = pd.read_excel("D:\python\python_for_beginner\成本产量数据表.xlsx", head=None, index_col=None, usecols='C' )
y_train = np.asarray(data.stack())
print(y_train)

# 开始实现线性回归
# 函数准备


# 线性拟合函数 返回函数值列表
def computer_model_output(x, w, b):
    m = x.shape[0]
    f_wb = np.zeros(m)
    for i in range(m):
        f_wb[i] = w * x[i] + b

    return f_wb


# 成本函数 返回总偏差
def compute_cost(x, y, w, b):
    m = x.shape[0]
    total_cost =0
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值