数据结构--AVL树

一、什么是AVL树

1、AVL树的概念

        二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法:

当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log_2 n),搜索时间复杂度O(log_2 n)。

2. 平衡因子

平衡因子为结点左右子树的高度差,本文假设平衡因子(bf)=右子树高度-左子树高度

在AVL树中每个结点的平衡因子都是大于等于-1,小于等于1的

二、AVL树的实现

1.AVL树结点结构
template<class K, class V>
struct AVLTreeNode
{
	struct AVLTreeNode* _left;
	struct AVLTreeNode* _right;
	struct AVLTreeNode* _parent; //_parent是为了后续旋转调整方便

	pair<K, V> _kv;//结点数据
	int _bf; //平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0)
	{}
};
2.AVL树的插入
插入流程:

1. 先将结点按二叉搜索树的规则‘’插入AVL树

2. 更新插入结点祖先的平衡因子

        a.如果插入到父亲结点的左边,平衡因子- -

        b.如果插入到父亲结点的右边,平衡因子++

        c.如果父亲的平衡因子==0,说明父亲结点原来的平衡因子一定为1或-1,插入后父亲结点达               到平衡,没有改变高度,插入成功,不需要向上改变祖先的平衡因子

        d.如果父亲的平衡因子为1或-1,说明父亲结点原来的平衡因子一定为0,插入结点后改变了               树的高度,此时需要向上调整祖先结点的平衡因子

        e.如果父亲的平衡因子为2或-2,说明此时不平衡了,需要旋转调整

三、AVL树的旋转

1. 新节点插入较高左子树的左侧---左左:右单旋
if (parent->_bf == -2 && cur->_bf == -1)
//纯粹的左边高
//     *
//    *
//   *

让parent的左指向subLR,如果subLR不为空,更新subLR的父亲结点,让subL的右指向parent,并更新parent与subL的父亲结点,注意parrent结点可能是根节点也可能是一个子树结点,更新subL的父亲节点需要分类讨论。旋转完后,树达到平衡,将parent和subL的平衡因子置为0

void RotateR(Node *parent)
{
    Node *SubL = parent->_left;
    Node *SubLR = SubL->_right;

    parent->_left = SubLR;
    if (SubLR)
        SubLR->_parent = parent;
    SubL->_right = parent;
    Node *ppNode = parent->_parent;
    parent->_parent = SubL;

    if (parent == _root)
    {
        _root = SubL;
        SubL->_parent = nullptr;
    }
    else
    {
        if (ppNode->_left == parent)
        {
            ppNode->_left = SubL;
        }
        else
        {
            ppNode->_right = SubL;
        }
        SubL->_parent = ppNode;
    }
    parent->_bf = SubL->_bf = 0;
}
2. 新节点插入较高右子树的右侧---右右:左单旋
if (parent->_bf == 2 && cur->_bf == 1)
//纯粹的右边高
//  *
//    *
//      *

与右单旋相类似,让parent的右指向subRL,如果subRL不为空更新subRL的父亲节点,让subR的左指向parent,并更新parent和sunR的父亲节点

void RotateL(Node* parent)
{
    Node* SubR = parent->_right;
    Node* SubRL = SubR->_left;

    parent->_right = SubRL;
    if (SubRL)
        SubRL->_parent = parent;
    SubR->_left = parent;
    Node* ppNode = parent->_parent;
    parent->_parent = SubR;

    if (parent == _root)
    {
        _root=SubR;
        SubR->_parent = nullptr;
    }
    else
    {
        if (ppNode->_left == parent)
        {
            ppNode->_left = SubR;
        }
        else
        {
            ppNode->_right = SubR;
        }
        SubR->_parent = ppNode;
    }
    parent->_bf = SubR->_bf = 0;
}
3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
if (parent->_bf == -2 && cur->_bf == 1)
//parent结点的左树高,而cur结点的右树高
//    *
//  *
//    *

先以subL为父亲结点进行左单旋,变为纯粹的左边高,再以parent为父亲结点进行右单旋调整,最后调整结点的平衡因子

平衡因子处理分析:

这种情况只有将结点插入到b树或c树后面才会进行左右旋,而左右旋只改变了parent、subL、subLR结点的左右子树,左旋是将b树给了subL结点,右旋是将c树给了parent结点,subLR作为处理树的根结点,故subLR的平衡因子最终为0,所以parent与subL结点平衡因子的关键就是插入结点插入到了b树下还是c树下

  • 如果插入到b树下:subL结点左右子树高度相同,bf=0,parent结点的右子树比左子树高1,bf=1
  • 如果插入到c树下:parent结点左右子树高度相同,bf=0,subL结点的左子树比右子树高1,bf=-1
void RotateLR(Node* parent)
{
    Node* SubL = parent->_left;
    Node* SubLR = SubL->_right;
    int bf = SubLR->_bf;

    RotateL(SubL);
    RotateR(parent);

    if (bf == -1)
    {
        SubL->_bf = 0;
        SubLR->_bf = 0;
        parent->_bf = 1;
    }
    else if (bf == 1)
    {
        SubL->_bf = -1;
        SubLR->_bf = 0;
        parent->_bf = 0;
    }
    else if (bf == 0)
    {
        SubL->_bf = 0;
        SubLR->_bf = 0;
        parent->_bf = 0;
    }
    else
    {
        assert(false);
    }
}
4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋
if (parent->_bf == 2 && cur->_bf == -1)
//parent结点的右树高,而cur结点的左树高
//    *
//      *
//    *

先以subR为父亲结点进行右单旋,变为纯粹的右边高,再以parent为父亲结点进行左单旋调整,最后调整结点的平衡因子

  • 如果插入到c树下:subR结点左右子树高度相同,bf=0,parent结点的左子树比右子树高1,bf=-1
  • 如果插入到b树下:parent结点左右子树高度相同,bf=0,subR结点的右子树比左子树高1,bf=-1
void RotateRL(Node* parent)
{
    Node* SubR = parent->_right;
    Node* SubRL = SubR->_left;
    int bf = SubRL->_bf;

    RotateR(SubR);
    RotateL(parent);
    
    if (bf == -1)
    {
        SubR->_bf = 1;
        SubRL->_bf = 0;
        parent->_bf = 0;
    }
    else if (bf == 1)
    {
        SubR->_bf = 0;
        SubRL->_bf = 0;
        parent->_bf = -1;
    }
    else if (bf == 0)
    {
        SubR->_bf = 0;
        SubRL->_bf = 0;
        parent->_bf = 0;
    }
    else
    {
        assert(false);
    }
}
AVL树插入代码:
bool Insert(const pair<K, V>& kv)
{
    if (_root == nullptr)
    {
        _root = new Node(kv);
        return true;
    }

    Node* parent = nullptr;
    Node* cur = _root;
    while (cur)
    {
        if (cur->_kv.first < kv.first)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_kv.first > kv.first)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            return false;
        }
    }

    cur = new Node(kv);
    if (parent->_kv.first < kv.first)
    {
        parent->_right = cur;
    }
    else
    {
        parent->_left = cur;
    }
    cur->_parent = parent;

    //更新平衡因子
    while (parent)
    {
        if (cur == parent->_left)
        {
            parent->_bf--;
        }
        else
        {
            parent->_bf++;
        }

        if (parent->_bf == 0) // 1 -1 -> 0
        {
            //更新结束
            break;
        }
        else if (parent->_bf == 1 || parent->_bf == -1)  // 0 -> 1 -1
        {
            // 继续往上更新
            cur = parent;
            parent = parent->_parent;
        }
        else if (parent->_bf == 2 || parent->_bf == -2) // 1 -1 -> 2 -2
        {
            // 当前子树出问题了,需要旋转平衡一下
            if (parent->_bf == -2 && cur->_bf == -1)
            {
                RotateR(parent);
            }
            else if (parent->_bf == 2 && cur->_bf == 1)
            {
                RotateL(parent);
            }
            else if (parent->_bf == 2 && cur->_bf == -1)
            {
                RotateRL(parent);
            }
            else if (parent->_bf == -2 && cur->_bf == 1)
            {
                RotateLR(parent);
            }

            break;
        }
        else
        {
            // 理论而言不可能出现这个情况
            assert(false);
        }
    }
    return true;
}

五、AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

1. 验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

2. 验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1
  • 节点的平衡因子是否计算正确

bool _Is_Balance(Node* root)
{
    if (root == nullptr)
    {
        return true;
    }
    int LeftHeight = _Height(root->_left);
    int RightHeight = _Height(root->_right);

    if (abs(LeftHeight - RightHeight >1))
    {
        cout<<"1:" << root->_kv.first << endl;
        return false;
    }

    if (RightHeight - LeftHeight != root->_bf)
    {
        cout <<"2:" << root->_kv.first << endl;
        cout << root->_parent->_kv.first << endl;
        cout << root->_bf << endl;
        return false;
    }
    return _Is_Balance(root->_left) && _Is_Balance(root->_right);
}

六、AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

  • 39
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张呱呱_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值