2024年最新Python驱动面试,Python 代码实现验证码识别_py验证码识别,2024年最新美团Python研发岗二面

本文介绍了2024年Python验证码识别的最新面试热点,包括验证码识别的重要性和预处理步骤。通过三个实例展示不同方法,帮助读者掌握Python在验证码识别中的应用,并提供了一套全面的Python学习资源,包括学习路线、视频教程和实践项目,助力技术提升。
摘要由CSDN通过智能技术生成

收集整理了一份《2024年最新Python全套学习资料》免费送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来

如果你需要这些资料,可以添加V无偿获取:hxbc188 (备注666)
img

正文

二、验证码识别

识别验证码,需要先对图像进行预处理,去除会影响识别准确度的线条或噪点,提高识别准确度。

实例1
import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
    # 边缘保留滤波  去噪
    dst = cv.pyrMeanShiftFiltering(image, sp=10, sr=150)
    # 灰度图像
    gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
    # 二值化
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
    # 形态学操作   腐蚀  膨胀
    erode = cv.erode(binary, None, iterations=2)
    dilate = cv.dilate(erode, None, iterations=1)
    cv.imshow('dilate', dilate)
    # 逻辑运算  让背景为白色  字体为黑  便于识别
    cv.bitwise_not(dilate, dilate)
    cv.imshow('binary-image', dilate)
    # 识别
    test_message = Image.fromarray(dilate)
    text = pytesseract.image_to_string(test_message)
    print(f'识别结果:{text}')


src = cv.imread(r'./test/044.png')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行效果如下:

识别结果:3n3D

Process finished with exit code 0

图片

实例2
import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
    # 边缘保留滤波  去噪
    blur =cv.pyrMeanShiftFiltering(image, sp=8, sr=60)
    cv.imshow('dst', blur)
    # 灰度图像
    gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY)
    # 二值化
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
    print(f'二值化自适应阈值:{ret}')
    cv.imshow('binary', binary)
    # 形态学操作  获取结构元素  开操作
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 2))
    bin1 = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel)
    cv.imshow('bin1', bin1)
    kernel = cv.getStructuringElement(cv.MORPH_OPEN, (2, 3))
    bin2 = cv.morphologyEx(bin1, cv.MORPH_OPEN, kernel)
    cv.imshow('bin2', bin2)
    # 逻辑运算  让背景为白色  字体为黑  便于识别
    cv.bitwise_not(bin2, bin2)
    cv.imshow('binary-image', bin2)
    # 识别
    test_message = Image.fromarray(bin2)
    text = pytesseract.image_to_string(test_message)
    print(f'识别结果:{text}')


src = cv.imread(r'./test/045.png')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()


运行效果如下:

二值化自适应阈值:181.0
识别结果:8A62N1

Process finished with exit code 0

图片

实例3

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

如果你需要这些资料,可以添加V无偿获取:hxbc188 (备注666)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
些资料,可以添加V无偿获取:hxbc188 (备注666)**
[外链图片转存中…(img-gLWVlvyH-1713850994440)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值