网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
这个问题的难度属于中等级别。需要对 Hive SQL 的窗口函数和条件表达式有一定的了解,并能够将它们应用到实际的数据分析问题中。同时,对于排序和日期计算也需要有一定的掌握。
三、知识点分析
解决这个问题需要掌握以下知识点:
- Hive SQL 的窗口函数:窗口函数可以在查询结果的基础上进行聚合计算。在这个问题中,我们可以使用窗口函数为每个用户的登录日期进行编号。
- Hive SQL 的条件表达式:条件表达式可以根据特定的条件进行计算。在这个问题中,我们需要根据登录日期与前一天日期的差值来判断是否连续登录。
- Hive SQL 的日期函数:在计算连续登录天数时,需要使用日期函数来进行日期的计算和比较。例如,可以使用
DATEDIFF()
函数计算日期之间的差值。
四、解决方案
数据示例
+----------+------------+| user_id | login_date |+----------+------------+| 1 | 2020-10-04'|| 1 | 2020-10-05'|| 1 | 2020-10-06'|| 1 | 2020-10-07'|+----------+------------+
具体步骤
1、选出用户id,以及登陆日期,去重
2、窗口函数按照用户id分组,登陆日期不重复排序
3、date_sub归一化登陆日期
4、按照用户id和归一化后的日期计算登陆日期的数量,即为连续登录天数
代码示例
select user_idfrom ( select user_id , continue_date , count(login_date) as continue_day_cnt from ( select user_id , login_date , date_sub(login_date,row_number() over(partition by user_id order by login_date asc) )as continue_date from ( select user_id , substr(login_time, 1, 10) as login_date FROM ( select 1 as user_id ,'2020-10-04' as login_date union all select 1 as user_id ,'2020-10-05' as login_date union all select 1 as user_id ,'2020-10-06' as login_date union all select 1 as user_id ,'2020-10-07' as login_date ) t1 group by user_id , substr(login_time, 1, 10) ) t ) m group by user_id , continue_date having count(login_date) >= 3 -- 连续3天登录,根据业务场景调整这一数值) xgroup by x.user_id;
五、总结
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**