kruskal模板

kruskal(关键1:)

struct edge{
    int start,to;long long val;
}bian[200000

并查集:

int f[100000];
for(i=1;i<=n;i++) f[i]=i;//初始化父节点 
int find(int x)//并查集部分
{
    if (f[x]==x) return x; else 
    {
        f[x]=find(f[x]);
        return f[x];
    }    
}

3:核心代码

void kruskal()//最小生成树
{
    
    for(int i=1;i<=m;i++)//遍历 
    {
        u=find(bian[i].start);//找到两条边其中的一点的父节点 
        v=find(bian[i].to);//找到两条边其中的另外一点的父节点 
        if(u!=v) //判断在不在同一个并查集里面,二者的父节点不同 
            {
               ans+=bian[i].val;//不在,就加上
            f[u]=v;//连接两个并查集
            total++;//条数加一,当条数为n-1时候即可结束 
            if(total==n-1)//到达结束 
            {
                flag=1;
                 break;//当形成了最小生成树后,退出(之后做的也没用了)
              }
            }
    }
} 

4:(快排边长,以便每次先拿出当前最优(最短)的路 )

sort(bian+1,bian+m+1,cmp);//快排边长,以便每次先拿出当前最优(最短)的路 
bool cmp(edge a,edge b)//结构体快排时用到的
{
    return a.val<b.val;
}
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
int n,m,i,j,u,v,total;
struct edge{
    int start,to;long long val;
}bian[2000005];
int f[100000];
long long ans;

int find(int x)//并查集部分
{
    if (f[x]==x) return x; else 
    {
        f[x]=find(f[x]);
        return f[x];
    }    
}

bool cmp(edge a,edge b)//结构体快排时用到的
{
    return a.val<b.val;
}
int flag=0;
void kruskal()//最小生成树
{
    
    for(int i=1;i<=m;i++)//遍历 
    {
        u=find(bian[i].start);//找到两条边其中的一点的父节点 
        v=find(bian[i].to);//找到两条边其中的另外一点的父节点 
        if(u!=v) //判断在不在同一个并查集里面,二者的父节点不同 
            {
               ans+=bian[i].val;//不在,就加上
            f[u]=v;//连接两个并查集
            total++;//条数加一,当条数为n-1时候即可结束 
            if(total==n-1)//到达结束 
            {
                flag=1;
                 break;//当形成了最小生成树后,退出(之后做的也没用了)
              }
            }
    }
} 
int main()
{
    scanf("%d%d",&n,&m);
    for(i=1;i<=n;i++) f[i]=i;//初始化父节点 
    for(i=1;i<=m;i++)
    {
        scanf("%d%d%d",&bian[i].start,&bian[i].to,&bian[i].val);//输入 
    }
    sort(bian+1,bian+m+1,cmp);//快排边长,以便每次先拿出当前最优(最短)的路 
    kruskal();//******
    if(flag)
    printf("%d",ans);
    else
    {
        cout<<"orz";
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Kruskal算法是一种用来求加权连通图的最小生成树(MST)的算法,由Joseph Kruskal在1956年发表。该算法的基本思想是按照边的权值从小到大的顺序选择边,并保证这些边不构成回路。具体做法是首先构造一个只含有n个顶点的森林,然后依据权值从小到大从连通网中选择边加入到森林中,并保证森林中不产生回路,直至森林变成一棵树为止。 使用Kruskal算法求解最小生成树的过程主要有两个关键步骤。首先,需要对图的所有边按照权值大小进行排序。其次,需要判断在将边添加到最小生成树中时是否会形成回路。通过这两个步骤,Kruskal算法能够找到图的最小生成树。 总结来说,Kruskal算法通过按照边的权值从小到大选择边,并保证不形成回路的方式来构建最小生成树。这种算法适用于解决求解加权连通图的最小生成树问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Kruskal算法简易教程(附最全注释代码实现)](https://blog.csdn.net/hzf0701/article/details/107933639)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [克鲁斯卡尔算法(Kruskal)详解](https://blog.csdn.net/weixin_45829957/article/details/108001882)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值