HDU1233还是畅通工程 HDU1863畅通工程 HDU1879继续畅通工程 Kruskal模板题

本文通过分析HDU的畅通工程系列题目,介绍了如何使用Kruskal算法解决最小生成树问题,以达到最小化公路总长度或成本的目标。文章提供了三个不同难度级别的实例,并附带C++代码实现。
摘要由CSDN通过智能技术生成

还是畅通工程

http://acm.hdu.edu.cn/showproblem.php?pid=1233
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)

Problem Description

某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。

Input

测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。

Output

对每个测试用例,在1行里输出最小的公路总长度。

Sample Input

3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0

Sample Output

3
5

Hint

Huge input, scanf is recommended.

Source

浙大计算机研究生复试上机考试-2006年

C++

#include <iostream> 
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int MAXN = 100 + 10;
const int MAXM = 10000 + 10;
int n;
int fa[MAXN];

struct node{
   
	int from, to;
	long long cost;
}edge[MAXM];

bool cmp(node a, node b){
   
	return a.cost < b.cost;
}

void init()
{
   
	for(int i = 1; i <= n; i ++)
		fa[i] = i;
}

int find(int x)
{
   
	if(fa[x] == x) return x;
	return fa[x] = find(fa[x]);
}

void kruskal()
{
   
	init();
	sort(edge, edge + (n * (n - 1) / 2), cmp);
	int cnt = 0;
	long long ans = 0;
	for(int i = 0; i < n * (n - 1) / 2; i ++)
	{
   
		int tx = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值