[洛谷]P1734 最大约数和(01背包的应用,好题)

思路:

我们把小于等于s的每个正整数看成一个物品,他们打价值c[i]就是其所有约数和,体积v[i]看成就是看i,背包容量是s,就背包容量s下,能获得的最大价值和.

每个数只能或不选,所有我们考虑01背包

ACocde:

#include<bits/stdc++.h>
using namespace std;
const int N=1e3+10,M=1e6+10;
int f[N],v[N],c[N],m;
void solve() {
   cin>>m;
   for(int  i=1;i<=m;i++){
   	for(int j=1;j*j<=i;j++){
   		if(i%j==0) c[i]+=j;
	   }
	   v[i]=i;
   }
   
   for(int i=1;i<=m;i++){
   	for(int j=m;j>=v[i];j--){
   		f[j]=max(f[j],f[j-v[i]]+c[i]);
	   }
   }
   cout<<f[m]<<"\n";
}
int main() {

	ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
	int tt=1;
	//cin>>tt;
	while(tt--)	solve();
	return 0;
}

over~

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 01背包是一个经典的动态规划,用于求解在限制物品体积或重量的情况下,能够获得的最大价值。 算法流程: 1. 定义状态:f[i][j] 表示前i个物品,体积不超过j的最大价值。 2. 状态转移:f[i][j] = max(f[i-1][j], f[i-1][j-v[i]]+w[i]),其中v[i]表示物品i的体积,w[i]表示物品i的价值。 3. 边界:f[0][j] = 0,0 <= j <= V,V为背包体积。 代码实现: ``` def knapsack(v, w, V): n = len(v) f = [[0 for j in range(V+1)] for i in range(n+1)] for i in range(1, n+1): for j in range(1, V+1): if j < v[i-1]: f[i][j] = f[i-1][j] else: f[i][j] = max(f[i-1][j], f[i-1][j-v[i-1]]+w[i-1]) return f[n][V] ``` 总结:01背包是一个典型的动态规划,通过定义状态,计算状态转移方程,以及初始化边界,即可解决该问。 ### 回答2: 01背包是一个经典的动态规划,也是算法和编程中常见的考察点之一。给定一组物品,每个物品都有自己的重量和价值,在限定的背包容量下,选择一些物品放入背包中,使得背包中物品的总价值最大化。 解决01背包的常用方法是使用动态规划。我们可以定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j的情况下,能够达到的最大价值。 基本思路是,对于每个物品i,我们可以有两种选择:放入背包或者不放入背包。如果我们选择将物品i放入背包中,那么背包的容量将减少weight[i],同时总价值将增加value[i];如果我们选择不放入物品i,那么背包的容量和总价值都不会发生变化。因此,我们可以通过比较这两种选择的结果,取较大的那个来更新dp[i][j]。 具体的动态规划转移方程如下: 1. 如果物品i的重量大于背包容量j,即weight[i] > j,那么dp[i][j] = dp[i-1][j],即不放入物品i,结果和前i-1个物品相同。 2. 如果物品i的重量小于等于背包容量j,即weight[i] <= j,有两种选择: a. 放入物品i:dp[i][j] = dp[i-1][j-weight[i]] + value[i] b. 不放入物品i:dp[i][j] = dp[i-1][j],结果和前i-1个物品相同。 3. 最终的结果为dp[n][c],即在前n个物品中,背包容量为c的情况下,所能达到的最大价值,其中n为物品的总个数,c为背包的容量。 通过动态规划的思想,我们可以逐步计算出dp数组的所有值,并找出最终的结果。该方法的时间复杂度为O(n*c),空间复杂度为O(n*c)。 在实际应用中,我们可以根据目的具体要求进行相应的优化,如利用一维数组进行降维优化、使用滚动数组减少空间复杂度等。不同的优化方法可以根据具体情况灵活运用,以提高算法的效率。 ### 回答3: 01背包是一种经典的动态规划,它是指在一组不同重量和不同价值的物品中,选择一部分物品装入背包,使得背包中物品的总价值最大,同时不能超过背包的重量限制。 解决01背包的关键是构建一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。根据动态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i]),可以逐步更新dp数组,最终得到dp[n][W]的最大价值。 具体的实现中,我们可以使用两层循环来更新dp数组。外层循环遍历物品,内层循环遍历背包容量,通过比较选择是否将当前物品放入背包。当物品的重量小于等于背包容量时,我们可以选择放入背包,此时背包中的总价值为dp[i-1][j-w[i]]+v[i];如果不放入背包,背包中的总价值为dp[i-1][j],取两者的较大值更新dp[i][j]。如果物品的重量大于背包容量,则不可能放入背包,即dp[i][j]保持不变。 最后,dp[n][W]即为所求的最大价值。可以通过反向遍历dp数组,根据dp[i][j]和dp[i-1][j]是否相等,判断物品i是否放入了背包,从而确定所选择的物品。 总之,通过动态规划的思想,我们可以解决01背包。这个问有着广泛的应用,在资源分配、装箱、旅行路线规划等领域都有着重要的作用。 希望以上回答对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值