四、连续时间系统的复频域分析

连续系统的S域分析

一、从傅里叶变换到拉普拉斯变换

傅里叶变换要满足Dirichlet(狄利克雷)条件中的绝对可积,对于某些增长信号,如 e a t ( a > 0 ) e^{at}(a>0) eat(a>0) ,它就不存在傅里叶变换。

引入一个衰减因子 e − σ t ( σ 为任意实数) e^{-\sigma t}(\sigma 为任意实数) eσtσ为任意实数) ,使它与 f ( t ) f(t) f(t) 相乘,于是 e − σ t f ( t ) e^{-\sigma t}f(t) eσtf(t) 得以收敛。

F b ( s ) = ∫ − ∞ ∞ f ( t ) e − s t d t (1) F_{b}(s)=\int _{-\infty}^{\infty} f(t) e^{-st}dt \tag1 Fb(s)=f(t)estdt(1)

f ( t ) = 1 2 π j ∫ σ − ∞ σ + ∞ F ( s ) e s t d s (2) f(t)=\frac{1}{2\pi j}\int_{\sigma-\infty}^{\sigma+\infty} F(s)e^{st }ds \tag2 f(t)=2πj1σσ+F(s)estds(2)

( 1 ) (1) (1) 双边拉氏变换, F b ( s ) F_b(s) Fb(s) :象函数

( 2 ) (2) (2) 双边拉氏逆变换, f ( t ) f(t) f(t) :原函数

二、拉氏变换收敛域


使 f ( t ) f(t) f(t) 拉氏变换存在的 σ \sigma σ 取值范围称为 F ( s ) F(s) F(s) 的收敛域

在这里插入图片描述

在这里插入图片描述

取值范围不同,变换的结果也不同


三、单边拉氏变换

带有初始时刻的信号,双边拉氏变换就转化成单边拉氏变换。
F b ( s ) = ∫ 0 − ∞ f ( t ) e − s t d t F_{b}(s)=\int _{0_-}^{\infty} f(t) e^{-st}dt Fb(s)=0f(t)estdt
f ( t ) = [ 1 2 π j ∫ σ − ∞ σ + ∞ F ( s ) e s t d s ] ⋅ ϵ ( t ) f(t)=[\frac{1}{2\pi j}\int_{\sigma-\infty}^{\sigma+\infty} F(s)e^{st }ds] \cdot\epsilon(t) f(t)=[2πj1σσ+F(s)estds]ϵ(t)

四、常见函数的拉氏变换

1、 δ ( t ) ⟷ 1 , σ > − ∞ \delta(t) \longleftrightarrow 1, \sigma>-\infty δ(t)1,σ>

2、 ϵ ( t ) 或 1 ⟷ 1 s , σ > 0 \epsilon(t) 或 1 \longleftrightarrow \frac{1}{s},\sigma>0 ϵ(t)1s1,σ>0

3、指数函数
e − s 0 t ⟷ 1 s + s 0 , σ > − R e [ s 0 ] e^{-s_0 t} \longleftrightarrow \frac{1}{s+s_0}, \sigma>-Re[s_0] es0ts+s01,σ>Re[s0]

4、三角函数
cos ⁡ ω 0 t ⟷ s s 2 + w 0 2 \cos\omega_0t \longleftrightarrow \frac{s}{s^2+w_0^2} cosω0ts2+w02s
sin ⁡ ω 0 t ⟷ ω 0 s 2 + w 0 2 \sin\omega_0t \longleftrightarrow \frac{\omega_0}{s^2+w_0^2} sinω0ts2+w02ω0

在这里插入图片描述

Tips

拉普拉斯变换与傅里叶变换的基本差别在于:

傅氏变换将时域函数 f ( t ) f(t) f(t) 变换为频域函数 F ( ω ) F(\omega) F(ω) ,或作相反变换,时域中的变量 t t t 和频域中的变量 ω \omega ω 都是实数;而拉氏变换是将时间函数 f ( t ) f(t) f(t) 变换为复变函数 F ( s ) F(s) F(s) ,或作相反变换,这时,时域变量 t t t 虽是实数, F ( s ) F(s) F(s)的变量 s s s 却是复数,与 ω \omega ω 相比较,变量 s s s 可称为“复频率”。

傅里叶变换建立了时域和频域间的联系,而拉氏变换则建立了时域与复频域( s s s 域)间的联系。

五、 Laplace变换性质

1.线性性质

若 :
L [ f 1 ( t ) ] = F 1 ( s ) , R e [ s ] > σ 1 \mathcal{L}[f_1(t)]=F_1(s) , Re[s]>\sigma_1 L[f1(t)]=F1(s),Re[s]>σ1

L [ f 2 ( t ) ] = F 2 ( s ) , R e [ s ] > σ 2 \mathcal{L}[f_2(t)]=F_2(s) , Re[s]>\sigma_2 L[f2(t)]=F2(s),Re[s]>σ2

则: L [ a 1 f 1 ( t ) + a 2 f 2 ( t ) ] = a 1 F 1 ( t ) + a 2 F 2 ( t ) , R e [ s ] > m a x ( σ 1 , σ 2 ) \mathcal{L}[a_1f_1(t)+a_2f_2(t)]=a_1F_1(t)+a_2F_2(t),Re[s]>max(\sigma_1,\sigma_2) L[a1f1(t)+a2f2(t)]=a1F1(t)+a2F2(t),Re[s]>max(σ1,σ2)

例: L [ δ ( t ) + ϵ ( t ) ] = 1 + 1 / s , σ > 0 \mathcal{L}[\delta(t)+\epsilon(t)]=1+1/s,\sigma>0 L[δ(t)+ϵ(t)]=1+1/s,σ>0

2.尺度变换

若 :
L [ f ( t ) ] = F ( s ) , R e [ s ] > σ 0 , 且有实数 a > 0 \mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0,且有实数 a>0 L[f(t)]=F(s),Re[s]>σ0,且有实数a>0

则:
L [ f ( a t ) ] = 1 a F ( s a ) , R e [ s ] > a σ 0 \mathcal{L}[f(at)]=\frac{1}{a}F(\frac{s}{a}),Re[s]>a\sigma_0 L[f(at)]=a1F(as),Re[s]>aσ0
在这里插入图片描述

3.时移特性

若 :
L [ f ( t ) ] = F ( s ) , R e [ s ] > σ 0 , 且有实常数 t 0 > 0 \mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0,且有实常数 t_0>0 L[f(t)]=F(s),Re[s]>σ0,且有实常数t0>0

则:
L [ f ( t − t 0 ) ϵ ( t − t 0 ) ] = e − s t 0 F ( s ) , R e [ s ] > σ 0 \mathcal{L}[f(t-t_0)\epsilon(t-t_0)]=e^{-st_0}F(s),Re[s]>\sigma_0 L[f(tt0)ϵ(tt0)]=est0F(s),Re[s]>σ0
例: L [ f ( a t − t 0 ) ϵ ( a t − t 0 ) ] = ? \mathcal{L}[f(at-t_0)\epsilon(at-t_0)]=? L[f(att0)ϵ(att0)]=?

先时移,再尺度变换,可得: L [ f ( a t − t 0 ) ϵ ( a t − t 0 ) ] = 1 a e − s a t 0 F ( s a ) \mathcal{L}[f(at-t_0)\epsilon(at-t_0)]=\frac{1}{a}e^{-\frac{s}{a}t_0}F(\frac{s}{a}) L[f(att0)ϵ(att0)]=a1east0F(as)

4.复频移特性

若 :
L [ f ( t ) ] = F ( s ) , R e [ s ] > σ 0 , 且有复常数 s a = σ a + j ω a \mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0,且有复常数 s_a=\sigma_a+j\omega_a L[f(t)]=F(s),Re[s]>σ0,且有复常数sa=σa+jωa

则:
L [ f ( t ) e s a t ] = F ( s − s a ) , R e [ s ] > σ 0 + σ a \mathcal{L}[f(t)e^{s_a t}] =F(s-s_a),Re[s]>\sigma_0+\sigma_a L[f(t)esat]=F(ssa),Re[s]>σ0+σa

例:因果信号 f ( t ) f(t) f(t) 的象函数 F ( s ) = s s 2 + 1 F(s)=\frac{s}{s^2+1} F(s)=s2+1s

问: L [ e − t f ( 3 t − 2 ) ] = ? \mathcal{L}[e^{-t}f(3t-2)]=? L[etf(3t2)]=?

先时移,再尺度变换,最后复频移
L [ f ( t ) ] = s s 2 + 1    ⟹    L [ f ( t − 2 ) ] = s s 2 + 1 ⋅ e − 2 s \mathcal{L}[f(t)]=\frac{s}{s^2+1}\implies\mathcal{L}[f(t-2)]=\frac{s}{s^2+1}\cdot e^{-2s} L[f(t)]=s2+1sL[f(t2)]=s2+1se2s
L [ f ( 3 t − 2 ) ] = 1 3 ⋅ s / 3 ( s / 3 ) 2 + 1 ⋅ e − 2 ( s / 3 ) = s s 2 + 9 ⋅ e − 2 s 3 \mathcal{L}[f(3t-2)]=\frac{1}{3}\cdot\frac{s/3}{(s/3)^2+1}\cdot e^{-2(s/3)}=\frac{s }{s ^2+9}\cdot e^{-\frac{2s}{3}} L[f(3t2)]=31(s/3)2+1s/3e2(s/3)=s2+9se32s
L [ e − t f ( 3 t − 2 ) ] = = s + 1 ( s + 1 ) 2 + 9 ⋅ e − 2 ( s + 1 ) 3 \mathcal{L}[e^{-t}f(3t-2)]==\frac{s+1 }{(s+1) ^2+9}\cdot e^{-\frac{2(s+1)}{3}} L[etf(3t2)]==(s+1)2+9s+1e32(s+1)

5.时域的微分特性

若 :
L [ f ( t ) ] = F ( s ) , R e [ s ] > σ 0 \mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0 L[f(t)]=F(s),Re[s]>σ0

则: L [ f ′ ( t ) ] = s F ( s ) − f ( 0 − ) \mathcal{L}[f'(t)]=sF(s)-f(0_{-}) L[f(t)]=sF(s)f(0)
L [ f ′ ′ ( t ) ] = s 2 F ( s ) − s f ( 0 − ) − f ′ ( 0 − ) \mathcal{L}[f''(t)]=s^2F(s)-sf(0_{-})-f'(0_{-}) L[f′′(t)]=s2F(s)sf(0)f(0)
L [ f ( n ) ( t ) ] = s n F ( s ) − Σ m = 0 n − 1 s n − 1 − m f ( m ) ( 0 − ) \mathcal{L}[f^{(n)}(t)]=s^nF(s)-\Sigma_{m=0}^{n-1}s^{n-1-m}f^{(m)}(0_{-}) L[f(n)(t)]=snF(s)Σm=0n1sn1mf(m)(0)

若: f ( t ) f(t) f(t) 为因果信号,则 L [ f ( n ) ( t ) ] = s n F ( s ) \mathcal{L}[f^{(n)}(t)]=s^nF(s) L[f(n)(t)]=snF(s)

因果信号时间轴从零开始, f ( 0 − ) = 0 f(0_{-})=0 f(0)=0

例:(1) L [ δ ( n ) ( t ) ] = ? \mathcal{L}[\delta^{(n)}(t)]=? L[δ(n)(t)]=? (2) L [ d d t [ ϵ ( t ) cos ⁡ 2 t ] ] = ? \mathcal{L}[\frac{d}{dt}[\epsilon(t)\cos2t]]=? L[dtd[ϵ(t)cos2t]]=? (3) L [ d d t [ cos ⁡ 2 t ] ] = ? \mathcal{L}[\frac{d}{dt}[ \cos2t]]=? L[dtd[cos2t]]=?

(1) L [ δ ( n ) ( t ) ] = s n \mathcal{L}[\delta^{(n)}(t)]=s^n L[δ(n)(t)]=sn
(2) ϵ ( t ) cos ⁡ 2 t \epsilon(t)\cos2t ϵ(t)cos2t 含有 ϵ ( t ) \epsilon(t) ϵ(t) ,为因果信号,利用公式,可得: L [ d d t [ ϵ ( t ) cos ⁡ 2 t ] ] = s ⋅ s s 2 + 4 , ( L [ cos ⁡ 2 t ] = s s 2 + 4 ) \mathcal{L}[\frac{d}{dt}[\epsilon(t)\cos2t]]=s\cdot\frac{s}{s^2+4},(\mathcal{L}[\cos2t]=\frac{s}{s^2+4}) L[dtd[ϵ(t)cos2t]]=ss2+4s(L[cos2t]=s2+4s)
(3) cos ⁡ 2 t \cos2t cos2t 非因果信号,利用公式,可得: L [ d d t [ cos ⁡ 2 t ] ] = s F ( s ) − f ( 0 − ) = s ⋅ s s 2 + 4 − 1 , { F ( s ) = L [ cos ⁡ 2 t ] = s s 2 + 4 } \mathcal{L}[\frac{d}{dt}[ \cos2t]]=sF(s)-f(0{-})=s\cdot\frac{s}{s^2+4}-1,\lbrace F(s)=\mathcal{L}[\cos2t]=\frac{s}{s^2+4}\rbrace L[dtd[cos2t]]=sF(s)f(0)=ss2+4s1{F(s)=L[cos2t]=s2+4s}

6.时域的积分特性

若 :
L [ f ( t ) ] = F ( s ) , R e [ s ] > σ 0 \mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0 L[f(t)]=F(s),Re[s]>σ0

则:
L [ ∫ 0 t f ( τ ) d τ ] = F ( s ) s + f ( − 1 ) ( 0 − ) s \mathcal{L}[\int _{0}^{t}f(\tau)d\tau]=\frac{F (s)}{s}+\frac{f^{(-1)}(0_{-})}{s} L[0tf(τ)dτ]=sF(s)+sf(1)(0)

例: L [ t 2 ϵ ( t ) ] = ? \mathcal{L}[t^2\epsilon(t)]=? L[t2ϵ(t)]=?

(1) L [ t ϵ ( t ) ] = L [ ∫ 0 t ϵ ( τ ) d τ ] = 1 s ⋅ 1 s = 1 s 2 , ( L [ ϵ ( t ) ] = 1 s ) \mathcal{L}[t\epsilon(t)]= \mathcal{L}[\int _{0}^{t}\epsilon(\tau)d\tau]=\frac{1}{s}\cdot \frac{1}{s}=\frac{1}{s^2},(\mathcal{L[\epsilon(t)]=\frac{1}{s}}) L[tϵ(t)]=L[0tϵ(τ)dτ]=s1s1=s21(L[ϵ(t)]=s1)
(2) L [ t 2 ϵ ( t ) ] = 2 L [ ∫ 0 t τ ϵ ( τ ) d τ ] = 2 ⋅ 1 s ⋅ 1 s 2 = 2 s 3 \mathcal{L}[t^2\epsilon(t)]= 2\mathcal{L}[\int _{0}^{t}\tau \epsilon(\tau)d\tau]=2\cdot\frac{1}{s}\cdot\frac{1}{s^2}=\frac{2}{s^3} L[t2ϵ(t)]=2L[0tτϵ(τ)dτ]=2s1s21=s32

7.卷积定理

时域:若因果函数

L [ f 1 ( t ) ] = F 1 ( s ) , R e [ s ] > σ 1 \mathcal{L}[f_1(t)]=F_1(s),Re[s]>\sigma_1 L[f1(t)]=F1(s),Re[s]>σ1

L [ f 2 ( t ) ] = F 2 ( s ) , R e [ s ] > σ 2 \mathcal{L}[f_2(t)]=F_2(s),Re[s]>\sigma_2 L[f2(t)]=F2(s),Re[s]>σ2

则: L [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( s ) F 2 ( s ) \mathcal{L}[f_1(t)*f_2(t)]=F_1(s)F_2(s) L[f1(t)f2(t)]=F1(s)F2(s)

s域卷积定理:
L [ f 1 ( t ) ⋅ f 2 ( t ) ] = 1 2 π j ∫ σ − j ∞ σ + j ∞ F 1 ( η ) F 2 ( s − η ) d η \mathcal{L}[f_1(t)\cdot f_2(t)]=\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}F_1(\eta)F_2(s-\eta)d\eta L[f1(t)f2(t)]=2πj1σjσ+jF1(η)F2(sη)dη

8.s域的微分与积分

若 :
L [ f ( t ) ] = F ( s ) , R e [ s ] > σ 0 \mathcal{L}[f(t)]=F (s) , Re[s]>\sigma_0 L[f(t)]=F(s),Re[s]>σ0

则:
L [ ( − t ) f ( t ) ] = d F ( s ) d s , L [ ( − t ) n f ( t ) ] = d n F ( s ) d s n \mathcal{L}[(-t)f(t)]=\frac{dF(s)}{ds},\mathcal{L}[(-t)^nf(t)]=\frac{d^nF(s)}{ds^n} L[(t)f(t)]=dsdF(s)L[(t)nf(t)]=dsndnF(s)
L [ f ( t ) t ] = ∫ s ∞ F ( η ) d η \mathcal{L}[\frac{f(t)}{t}]=\int_{s}^{\infty}F(\eta)d\eta L[tf(t)]=sF(η)dη

例: L [ t 2 e − 2 t ϵ ( t ) ] = ? \mathcal{L}[t^2e^{-2t}\epsilon(t)]=? L[t2e2tϵ(t)]=?

L [ e − 2 t ϵ ( t ) ] = 1 s + 2    ⟹    L [ t 2 e − 2 t ϵ ( t ) ] = d 2 d s 2 ( 1 s + 2 ) = 2 ( s + 2 ) 3 \mathcal{L}[ e^{-2t}\epsilon(t)]=\frac{1}{s+2}\implies \mathcal{L}[t^2 e^{-2t}\epsilon(t)]=\frac{d^2}{ds^2}(\frac{1}{s+2})=\frac{2}{(s+2)^3} L[e2tϵ(t)]=s+21L[t2e2tϵ(t)]=ds2d2(s+21)=(s+2)32

9.初值定理和中值定理

初值: f ( 0 + ) = lim ⁡ t → 0 + f ( t ) = lim ⁡ s → ∞ s F ( s ) f(0_{+})=\lim_{t\to 0_{}+}f(t)=\lim_{s\to \infty}sF(s) f(0+)=t0+limf(t)=slimsF(s)
终值:若 f ( t ) f(t) f(t) t → ∞ t\to \infty t 时存在 ,且 L [ f ( t ) ] = F ( s ) , R e [ s ] > σ 0 , σ 0 < 0 \mathcal{L}[f(t)]=F (s),Re[s]>\sigma_0,\sigma_0<0 L[f(t)]=F(s),Re[s]>σ0,σ0<0
则: f ( ∞ ) = lim ⁡ s → 0 s F ( s ) f(\infty)=\lim_{s\to 0}sF(s) f()=s0limsF(s)

六、Laplace逆变换求解方法

拉普拉斯逆变换求解方法:

(1)根据定义,复变函数积分(比较困难)

(2)部分分式分解(常用

(3)留数定理

(4)数值计算(计算机)

部分分式分解

若象函数 F ( s ) F(s) F(s) s s s 的有理分式,可写为:
F ( s ) = b m s m + b m − 1 s m − 1 + . . . + b 1 s + b 0 s n + a n − 1 s n − 1 + . . . + a 1 s + a 0 F(s)=\frac{b_ms^m+b_{m-1}s^{m-1}+...+b_1s+b_0}{s^n+a_{n-1}s^{n-1}+...+a_1s+a_0} F(s)=sn+an1sn1+...+a1s+a0bmsm+bm1sm1+...+b1s+b0

m ≥ n m \ge n mn (假分式),可用多项式除法将象函数 F ( s ) F(s) F(s) 分结尾有理多项式 P ( s ) P(s) P(s) 与有理真分式之和。

F ( s ) = P ( s ) + B 0 ( s ) A ( s ) F(s)=P(s)+\frac{B_0(s)}{A(s)} F(s)=P(s)+A(s)B0(s)

有理真分式的情形

F ( s ) F(s) F(s) s s s 实系数有理真分式( m < n m<n m<n),则可写为:
F ( s ) = B ( s ) A ( s ) = b m s m + b m − 1 s m − 1 + . . . + b 1 s + b 0 s n + a n − 1 s n − 1 + . . . + a 1 s + a 0 F(s)=\frac{B (s)}{A(s)}=\frac{b_ms^m+b_{m-1}s^{m-1}+...+b_1s+b_0}{s^n+a_{n-1}s^{n-1}+...+a_1s+a_0} F(s)=A(s)B(s)=sn+an1sn1+...+a1s+a0bmsm+bm1sm1+...+b1s+b0

A ( s ) A(s) A(s) 称为特征多项式,方程 A ( s ) = 0 A(s)=0 A(s)=0 称为特征方程,它的根称为特征根,也称为 F ( s ) F(s) F(s) 的固有频率。 n n n 个特征根 p i p_i pi 称为 F ( s ) F(s) F(s) 的极点。

1、极点为实数,无重根

例: F ( s ) = 2 s + 1 s ( s + 2 ) ( s + 3 ) F(s)=\frac{2s+1}{s(s+2)(s+3)} F(s)=s(s+2)(s+3)2s+1

解:令: F ( s ) = k 1 s + k 2 s + 2 + k 3 s + 3 F(s)=\frac{k_1}{s}+\frac{k_2}{s+2}+\frac{k_3}{s+3} F(s)=sk1+s+2k2+s+3k3
k 1 = s F ( s ) ∣ s = 0 = 1 / 6 , k 2 = ( s + 2 ) F ( s ) ∣ s = − 2 = 3 / 2 k 3 = ( s + 3 F ( s ) ∣ s = − 3 = − 5 / 3 k_1=sF(s)|_{s=0}=1/6,\\k_2=(s+2)F(s)|_{s=-2}=3/2\\k_3=(s+3F(s)|_{s=-3}=-5/3 k1=sF(s)s=0=1/6,k2=(s+2)F(s)s=2=3/2k3=(s+3F(s)s=3=5/3
故: F ( s ) = 1 6 s + 3 2 ( s + 2 ) + − 5 3 ( s + 3 ) F(s)=\frac{ 1}{6s}+\frac{3}{2(s+2)}+\frac{-5}{3(s+3)} F(s)=6s1+2(s+2)3+3(s+3)5
F ( s ) F(s) F(s) 拉式反变换为 f ( t ) = ( 1 6 + 3 2 e − 2 t − 5 3 e − 3 t ) ϵ ( t ) f(t)=( \frac{ 1}{6}+\frac{3}{2}e^{-2t}-\frac{5}{3}e^{-3t})\epsilon(t) f(t)=(61+23e2t35e3t)ϵ(t)

2、包含共轭复数极点

例: F ( s ) = s 2 + 3 ( s + 2 ) ( s 2 + 2 s + 5 ) F(s)=\frac{s^2+3}{ (s+2)(s^2+2s+5)} F(s)=(s+2)(s2+2s+5)s2+3

解: F ( s ) = s 2 + 3 ( s + 1 + j 2 ) ( s + 1 − j 2 ) ( s + 2 ) F(s)=\frac{s^2+3}{(s+1+j2)(s+1-j2)(s+2)} F(s)=(s+1+j2)(s+1j2)(s+2)s2+3
令: F ( s ) = k 1 s + 1 − j 2 + k 2 s + 1 + j 2 + k 3 s + 2 F(s)=\frac{k_1}{s+1-j2}+\frac{k_2}{s+1+j2}+\frac{k_3}{s+2} F(s)=s+1j2k1+s+1+j2k2+s+2k3
p 1 , 2 = − α ± j β , ( α = 1 , β = 2 ) p_{1,2}=-\alpha\pm j\beta,(\alpha=1,\beta=2) p1,2=α±jβ,(α=1,β=2)
k 1 = ( s + 1 − j 2 ) F ( s ) ∣ s = − 1 + j 2 = − 1 + j 2 5 k_1=(s+1-j2)F(s)|_{s={-1+j2}}=\frac{-1+j2}{5} k1=(s+1j2)F(s)s=1+j2=51+j2
即: k 1 , 2 = A ± j B , ( A = − 1 5 , B = 2 5 ) 即:k_{1,2}=A\pm jB,(A=-\frac{1}{5},B=\frac{2}{5}) 即:k1,2=A±jB,(A=51,B=52)
k 1 = ( s + 2 ) F ( s ) ∣ s = − 2 = 7 5 k_1=(s+2)F(s)|_{s=-2}=\frac{7}{5} k1=(s+2)F(s)s=2=57
故: F ( s ) = − 1 + j 2 5 s + 1 − j 2 + − 1 − j 2 5 s + 1 + j 2 + 7 5 s + 2 F(s)=\frac{\frac{-1+j2}{5}}{s+1-j2}+\frac{\frac{-1-j2}{5}}{s+1+j2}+\frac{\frac{7}{5}}{s+2} F(s)=s+1j251+j2+s+1+j251j2+s+257
F ( s ) F(s) F(s) 拉式反变换为 f ( t ) = { 2 e − t [ − 1 5 cos ⁡ ( 2 t ) − 2 5 sin ⁡ ( 2 t ) ] + 7 5 e − 2 t } ϵ ( t ) f(t)=\lbrace 2e^{-t}[-\frac{1}{5}\cos(2t)-\frac{2}{5}\sin(2t)]+\frac{7}{5}e^{-2t}\rbrace \epsilon(t) f(t)={2et[51cos(2t)52sin(2t)]+57e2t}ϵ(t)

3、有多重极点

例: F ( s ) = s − 2 s ( s − 1 ) 2 F(s)=\frac{s-2}{s(s-1)^2} F(s)=s(s1)2s2

解:令: F ( s ) = k 11 ( s − 1 ) 2 + k 12 ( s − 1 ) + k 2 s F(s)=\frac{k_{11}}{(s-1)^2}+\frac{k_{12}}{(s-1) }+\frac{k_2}{s} F(s)=(s1)2k11+(s1)k12+sk2
令: F 1 ( s ) = ( s − 1 ) 2 F ( s ) = s − 2 s F_1(s)=(s-1)^2F(s)=\frac{s-2}{s} F1(s)=(s1)2F(s)=ss2
k 11 = F 1 ( s ) ∣ s = 1 = − 1 , k 12 = d d s F 1 ( s ) = s − ( s − 2 ) s 2 ∣ s = 1 = 2 , k 2 = s F ( s ) ∣ s = 0 = − 2 k_{11}=F_1(s)|_{s=1}=-1,k_{12}=\frac{d}{ds}F_1(s)=\frac{s-(s-2)}{s^2}|_{s=1}=2,k_2=sF(s)|_{s=0}=-2 k11=F1(s)s=1=1,k12=dsdF1(s)=s2s(s2)s=1=2,k2=sF(s)s=0=2
故: F ( s ) = − 1 ( s − 1 ) 2 + 2 ( s − 1 ) + − 2 s F(s)=\frac{-1}{(s-1)^2}+\frac{2}{(s-1) }+\frac{-2}{s} F(s)=(s1)21+(s1)2+s2
F ( s ) F(s) F(s) 拉式反变换为 f ( t ) = ( − t e t + 2 e t − 2 ) ϵ ( t ) f(t)=(-te^t+2e^t-2)\epsilon(t) f(t)=(tet+2et2)ϵ(t)

微分方程变换解

在这里插入图片描述

解:微分方程两边取拉氏变换,可得:
( s 2 + 5 s + 6 ) Y ( s ) − s y ( 0 − ) − y ′ ( 0 − ) − 5 y ( 0 − ) = ( 2 s + 10 ) F ( s ) (s^2+5s+6)Y(s)-sy(0_{-})-y'(0_{-})-5y(0_{-})=(2s+10)F(s) (s2+5s+6)Y(s)sy(0)y(0)5y(0)=(2s+10)F(s)
整理:
Y ( s ) = s + 6 s 2 + 5 s + 6 + 2 s + 10 s 2 + 5 s + 6 ⋅ F ( s ) Y(s)=\frac{s+6}{s^2+5s+6}+\frac{2s+10}{s^2+5s+6}\cdot F(s) Y(s)=s2+5s+6s+6+s2+5s+62s+10F(s)
故: Y X ( s ) = s + 6 s 2 + 5 s + 6 = 4 s + 2 + − 3 s + 3 , Y f ( s ) = 2 s + 10 s 2 + 5 s + 6 = − 6 s + 2 + 2 s + 3 + 4 s + 1 Y_X(s)=\frac{s+6}{s^2+5s+6}=\frac{4}{s+2}+\frac{-3}{s+3},Y_f(s)=\frac{2s+10} {s^2+5s+6}=\frac{-6}{s+2}+\frac{2}{s+3}+\frac{4}{s+1} YX(s)=s2+5s+6s+6=s+24+s+33,Yf(s)=s2+5s+62s+10=s+26+s+32+s+14
零状态响应: y f ( t ) = ( 2 e − 3 t + 4 e − t − 6 e − 2 t ) ϵ ( t ) y_f(t)=(2e^{-3t}+4e^{-t}-6e^{-2t})\epsilon(t) yf(t)=(2e3t+4et6e2t)ϵ(t)
零输入响应: y X ( t ) = ( 4 e − 2 t − 3 e − 3 t ) ϵ ( t ) y_X(t)=( 4e^{-2t}-3e^{-3t})\epsilon(t) yX(t)=(4e2t3e3t)ϵ(t)
全响应: y ( t ) = ( − e − 3 t + 4 e − t − 2 e − 2 t ) ϵ ( t ) y(t)=(-e^{-3t}+4e^{-t}-2e^{-2t})\epsilon(t) y(t)=(e3t+4et2e2t)ϵ(t)

七、系统与系统函数

1.系统函数

系统函数定义为:
H ( s ) = Y f ( s ) F ( s ) = B ( s ) A ( s ) H(s)=\frac{Y_f(s)}{F(s)}=\frac{B(s)}{A(s)} H(s)=F(s)Yf(s)=A(s)B(s)

它只与系统的结构、元件的参数有关,而与激励、初始状态无关。

y f ( t ) = h ( t ) ∗ f ( t ) ⟶ Y f ( s ) = L [ h ( t ) ] F ( s ) y_f(t)=h(t)*f(t) \longrightarrow Y_f(s)=\mathcal{L}[h(t)]F(s) yf(t)=h(t)f(t)Yf(s)=L[h(t)]F(s)
在这里插入图片描述

2.系统的s域框图

在这里插入图片描述
例:
在这里插入图片描述

解:设左边加法器输出为: X ( s ) X(s) X(s)
在这里插入图片描述
则: X ( s ) = F ( s ) − 5 s − 1 X ( s ) − 4 s − 2 X ( s ) X(s)=F(s)-5s^{-1}X(s)-4s^{-2}X(s) X(s)=F(s)5s1X(s)4s2X(s)
Y ( s ) = X ( s ) + 4 s − 2 X ( s ) Y(s)=X(s)+4s^{-2}X(s) Y(s)=X(s)+4s2X(s)
可得: X ( s ) = s 2 s 2 + 5 s + 4 F ( s ) X(s)=\frac{s^2}{s^2+5s+4}F(s) X(s)=s2+5s+4s2F(s)
Y ( s ) = s 2 + 4 s 2 + 5 s + 4 F ( s ) , 即: ( s 2 + 5 s + 4 ) Y ( s ) = ( s 2 + 4 ) F ( s ) Y(s)=\frac{s^2+4}{s^2+5s+4}F(s),即:({s^2+5s+4})Y(s)=(s^2+4)F(s) Y(s)=s2+5s+4s2+4F(s),即:(s2+5s+4)Y(s)=(s2+4)F(s)
(1)微分方程: y ′ ′ ( t ) + 5 y ′ ( t ) + 4 y ( t ) = f ′ ′ ( t ) + 4 f ( t ) y''(t)+5y'(t)+4y(t)=f''(t)+4f(t) y′′(t)+5y(t)+4y(t)=f′′(t)+4f(t)
(2)系统函数: H ( s ) = s 2 + 4 s 2 + 5 s + 4 H(s)=\frac{s^2+4}{s^2+5s+4} H(s)=s2+5s+4s2+4
(3) H ( s ) = s 2 + 4 s 2 + 5 s + 4 = 1 + 5 3 ( s + 1 ) − 20 3 ( s + 4 ) H(s)=\frac{s^2+4}{s^2+5s+4}=1+\frac{5}{3(s+1)}-\frac{20}{3(s+4)} H(s)=s2+5s+4s2+4=1+3(s+1)53(s+4)20
h ( t ) = L − 1 [ H ( s ) ] = δ ( t ) + ( 5 3 e − t − 20 3 e − 4 t ) ϵ ( t ) h(t)=\mathcal{L^{-1}}[H(s)]=\delta(t)+(\frac{5}{3}e^{-t}-\frac{20}{3}e^{-4t})\epsilon(t) h(t)=L1[H(s)]=δ(t)+(35et320e4t)ϵ(t)


本文作者:AXYZdong

本文地址:https://axyzdong.github.io/Signals-and-Systems

仓库地址:https://github.com/AXYZdong/Signals-and-Systems

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值