Diffusion模型(唐宇迪)

文章详细讲解了diffusion模型的正向和逆向过程,强调在理解过程中应避免只依赖文字解释,推荐观看唐宇迪的视频配合学习。正向过程涉及α的取值和递推,而逆向过程利用贝叶斯公式求解分布,特别是通过UNet模型预测噪声以实现图像生成。文章还介绍了前向和逆向过程的具体步骤,以及在训练和采样中的应用。
摘要由CSDN通过智能技术生成

diffusion精讲(唐宇迪)_哔哩哔哩_bilibili

这篇文章主要用于自己后面复习使用,我的建议是大家在看完视频前尽量少看csdn等文章,很难理解,可以边看视频或者看完视频将本文配套使用。文章仅供学习。

正向过程

李宏毅中提到的的α如何取值

 李宏毅中提到的â其实是累乘,是经过一系列递推后得到的结果,宇哥666。

第六行和最后一行的噪音上面没有一

正向过程可以直接推导出最后,但是反向过程需要一步一步向前还原。上一篇中李宏毅管这叫auto-regressive。

逆向过程

总体来说

就是我们要通过Xt的分布求Xt-1的分布,但是无法直接求出来。但由于通过Xt-1的分布可以求出Xt的分布,那么就可以借助贝叶斯公式求出Xt-1的分布。

因此

 这里并不是等号,而是正比例符号;并且1-αt=βt;

 

前三行先将之前的式子进行化简;

第五行是将正态分布计算公式化简,这里说可以得到均值和方差的意思是可以将第五行化简的式子与第三行的式子一一对应,可以从第三行红色的部分计算出方差,再将得到的方差带入第三行蓝色的式子计算出均值,就是这里说得到均值和方差。

逆向过程的目的就是求出X0,所以X0不可知。所以这里用Xt来表示X0,目前的均值仅与Xt有关。

倒数第二行Zt上没有一

在原始论文中直接使用β作为Xt-1的方差。真实方差应该是:(1-ât-1)βt/1-ât。

这里Zt是求不出来的,因此训练模型来预测Zt。相关论文中的模型采用UNet。模型输入参数有两个,Xt和step t。t是用来得到真实噪音Zt,然后用预测的噪音Zt和真实的噪音Zt计算损失。

原始论文中直接使用βt-1作为Xt-1的方差

宇哥这里灵魂发问:为什么要用UNet网络,而不用更复杂的网络?

前向过程:

2:从数据集中采样batch_size张图片

3:t属于[1,T],并且batch_size内每张图片对应的T是不一样的!

4:生成噪声。

5:训练UNet参数。

逆向过程:

1:在标准正态分布中随机采样XT

2:for循环

3:除了最后一步,都采样一个Z

4:推导出Xt-1

Diffusion模型微调是指在已有的Diffusion模型基础上,对模型的参数进行调整和优化的过程。这个过程旨在提高模型的准确性和预测能力。 首先,Diffusion模型是一种描述信息扩散过程的数学模型,它可以用来模拟信息在社交网络中的传播、产品在市场中的推广等现象。在现实情况中,模型的参数往往需要根据具体场景进行微调。 微调Diffusion模型的方法主要包括以下几个步骤。首先,根据模型和场景的特点,选择合适的性能指标来衡量模型的表现。例如,如果模拟信息传播过程,则可以选择准确度、平均传播速度等指标。其次,对模型中的参数进行设置和调整。这包括确定传播速率、抑制因子、节点影响力等参数的数值。根据模型的特点,采用常用的统计学方法如最小二乘法、极大似然估计等进行参数估计,并根据实际数据进行模型拟合和优化。 另外,还可以使用一些优化算法来进行模型的微调,如遗传算法、粒子群优化算法等。这些算法可以通过自适应搜索和迭代优化来寻找最优的参数组合,提高模型的准确性。 最后,微调完Diffusion模型后,应该进行模型的验证和评估。这可以通过比较模拟结果和真实数据的对比来进行。如果模型的预测结果与实际数据吻合较好,那么说明微调后的模型是可信的。 综上所述,Diffusion模型微调是一个通过调整和优化参数来提高模型准确性和预测能力的过程。通过选择合适的性能指标、使用合适的参数估计方法和优化算法,并进行验证评估,可以使模型更好地适应不同的应用场景,提高模型的应用价值。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值