首先介绍算数基本定理
m = P 1 α 1 P 2 α 2 P 3 α 3 P 4 α 4 . . . . . P k α k \displaystyle\bm{m=P_1^{\alpha_1}P_2^{\alpha_2}P_3^{\alpha_3}P_4^{\alpha_4}.....P_k^{\alpha_k}} m=P1α1P2α2P3α3P4α4.....Pkαk
- 其中 P 1 , P 2 . . . . . . P k P_1,P_2...... P_k P1,P2......Pk都是质数,即为任何一个数都可以表示成为质数的组合乘积
接下来介绍 n ! n! n!的质数分解
-
首先我们以一个数字为例子 12 ! \bm{12!} 12!
12 ! = 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 12!=12\times11\times10\times9\times8\times7\times6\times5\times4\times3\times2\times1 12!=12×11×10×9×8×7×6×5×4×3×2×1 -
观察他的质因数为 2 , 3 , 5 , 11 , 7 2 ,3,5,11,7 2,3,5,11,7
-
我们在观察一下这些质因数可能得倍数:
2 : 2 , 4 , 6 , 8 , 10 , 12 2:2,4,6,8,10,12 2:2,4,6,8,10,12 3 : 3 , 6 , 9 , 12 3:3,6,9,12 3:3,6,9,12 5 : 5 , 10 5:5,10 5:5,10 11 : 11 11:11 11:11 7 : 7 7:7 7:7 -
根据我们发掘出来的质因数 12 ! 12! 12!可以写为
12 ! = ( 3 1 × 2 2 ) × 1 1 1 × ( 5 1 × 2 1 ) × ( 3 2 ) × ( 1 × 2 3 ) × 7 1 × ( 3 × 2 1 ) × 5 × 2 2 × 3 1 × 2 1 × 1 12!=(3^1\times2^2)\times11^1\times(5^1\times2^1)\times(3^2)\times(1\times2^3)\times7^1\times(3\times2^1)\times5\times2^2\times3^1\times2^1\times1 12!=(31×22)×111×(51×21)×(32)×(1×23)×71×(3×21)×5×22×31×21×1 -
咱们在进行一些整理,看看2的不同次方的个数;
个数为(以下除法均为向下取整): 12 2 3 个 + 12 2 2 个 + 12 2 1 个 \frac{12}{2^3}个+ \frac{12}{2^2}个+\frac{12}{2^1}个 2312个+2212个+2112个
一共为 1 + 3 + 6 = 10 个 一共为1+3+6=10个 一共为1+3+6=10个 -
上面发现质数 P 的个数 = ⌊ a p 1 ⌋ + ⌊ a p 2 ⌋ + ⌊ a p 3 ⌋ + . . . . . . . ⌊ a p k ⌋ P的个数=\lfloor {\frac{a}{p^1}} \rfloor+\lfloor {\frac{a}{p^2}} \rfloor+\lfloor {\frac{a}{p^3}} \rfloor+.......\lfloor {\frac{a}{p^k}} \rfloor P的个数=⌊p1a⌋+⌊p2a⌋+⌊p3a⌋+.......⌊pka⌋
-
所以我们就可以算出所有的质因子个数然后再根据基本算数定理就可以求出 a ! a! a!
接下来咱们开始利用这个性质来做组合数的题
选自AcWing 888. 求组合数 IV
- 输入 a , b a,b a,b 求 C a b C_{a}{b} Cab的数值
基本思路:
1.因为 C a b = a ! b ! × ( a − b ) ! C_{a}{b}=\frac{a!}{b!\times(a-b)!} Cab=b!×(a−b)!a!
2.根据 基本算数定理 我们把 C a b = P 1 a 1 × P 2 a 2 × . . . . . . . × P k a k C_{a}{b}=P_1^{a_1}\times{P_2^{a_2}\times}.......\times{P_k^{ak}} Cab=P1a1×P2a2×.......×Pkak
3.除法无非就是把对应的素数个数减去即为:
P
i
=
∑
j
=
1
n
a
p
i
j
−
∑
j
=
1
n
a
−
b
p
i
j
−
∑
j
=
1
n
b
p
i
j
(
公式如有错误请指正
)
P_i=\sum_{j=1}^n \frac{a}{p_i^{j}}-\sum_{j=1}^n \frac{a-b}{p_i^{j}}-\sum_{j=1}^n \frac{b}{p_i^{j}}(公式如有错误请指正)
Pi=j=1∑npija−j=1∑npija−b−j=1∑npijb(公式如有错误请指正)
4.再把所有的
P
i
P_i
Pi相乘就是最终的答案;
5.上代码
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int N=5010;
int primes[N],cnt;
bool st[N];
int sum[N];//存放素数的个数;
void get_primes(int x)
{
for(int i=2;i<=x;i++){
if(!st[i])primes[cnt++]=i;
for(int j=0;primes[j]<=x/i;j++)
{
st[primes[j]*i]=true;
if(i%primes[j]==0)break;
}
}
}
int get(int x,int p)
{
int res=0;
while(x)
{
res+=x/p;
x/=p;
}
return res;
}
vector<int> mul(vector<int>a,int b)
{
vector<int>c;
int t=0;
for(int i=0;i<(int)a.size();i++)
{
t+=a[i]*b;
c.push_back(t%10);
t/=10;
}
while(t)
{
c.push_back(t%10);
t/=10;
}
return c;
}
int main()
{
int a,b;
cin>>a>>b;
get_primes(a);//把可能出现的次数存入primes数组里;
for(int i=0;i<cnt;i++)
{
int p=primes[i];
sum[i]=get(a,p)-get(a-b,p)-get(b,p);
}//获取每个次数的个数;
//下面用高精度来算乘法;
vector<int>end;
end.push_back(1);
for(int i=0;i<cnt;i++)
{
for(int j=0;j<sum[i];j++)
{
end=mul(end,primes[i]);
}
}
for(int i=(int)end.size()-1;i>=0;i--)cout<<end[i];
}