leetcode day36 01背包问题 494

494 目标和

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

有点难想到用背包问题来解题,多练

二维初始化复杂一点

/*
加法为x,减法则为sum-x,target=x-(sum-x)
所以x=(target+sum)/2
考虑不满足的情况
(1)s+sum为奇数不满足
(2)abs(target)>sum也不满足
转化为01背包问题
1、dp[i][j]为物品[0,i]装满背包j的方法数
2、确定递推公式
(1)不放物品i,dp[i][j]=dp[i-1][j]
(2)放物品i,dp[i][j]=dp[i-1][j-nums[i]]
3、初始化 
(1)nums[i]不为0时
dp[0][0]=1//什么都不放为一种情况
dp[0][nums[0]]=1
dp[i][0]=1
(2)nums[i]为0时
如果nums[0]=0,那么dp[0][0]=2
如果nums[1]也等于=0,那么dp[0][0]=4
总结规律:nums[0,i]0的个数为cnt,那么dp[0][i]=2的cnt次方
*/
int Sum(int s[],int numsSize){
    int sum=0;
    for(int i=0;i<numsSize;i++)sum+=s[i];
    return sum;
}
int findTargetSumWays(int* nums, int numsSize, int target) {
    int dp[25][1005]={};
    int sum=Sum(nums,numsSize),cnt=0;
    if((sum+target)%2!=0||abs(target)>sum)return 0;
    int bag=(sum+target)/2;//背包容量
    dp[0][0]=1;
    //初始化第一行
    if(nums[0]<=bag)dp[0][nums[0]]=1;
    //初始化第一列
    for(int i=0;i<numsSize;i++){
        if(nums[i]==0)cnt++;
        dp[i][0]=pow(2,cnt);
    }
    for(int i=1;i<numsSize;i++){
        for(int j=0;j<=bag;j++){
            if(nums[i]>j)dp[i][j]=dp[i-1][j];//放不下不放
            else dp[i][j]=dp[i-1][j]+dp[i-1][j-nums[i]];
        }
    }
    return dp[numsSize-1][bag];
}

一维dp数组

/*一维数组dp
dp[j]表示容量为j的背包能放入的最大价值
递推公式  dp[j]+=dp[j-nums[i]];
初始化 dp[0]=1
因为后面循环包括nums[i]=0的情况
*/
int findTargetSumWays(int* nums, int numsSize, int target) {
  int dp[1005]={};
  int sum=0;
  for(int i=0;i<numsSize;i++)sum+=nums[i];
  if((sum+target)%2!=0||abs(target)>sum)return 0;
  dp[0]=1;
  int bag=(target+sum)/2;
  for(int i=0;i<numsSize;i++){
    for(int j=bag;j>=nums[i];j--){
        dp[j]+=dp[j-nums[i]];
    }
  }
  return dp[bag];
}

1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值