算法训练Day42 | 01背包问题的理论基础(二维和一维dp数组的全面剖析);LeetCode416. 分割等和子集(01背包的应用)

本文深入探讨了01背包问题,包括二维和一维动态规划数组的实现,以及如何在LeetCode416题中应用01背包理论。文章详细阐述了动态规划五部曲,强调了初始化和遍历顺序的重要性,并通过实例展示了dp数组的推导过程。此外,还讨论了一维dp数组的滚动优化,解释了为何必须倒序遍历背包容量。最后,文章分析了LeetCode416题的解决方案,将其转化为01背包问题。

目录

01背包问题的理论基础

方法一:二维dp数组01背包

1. 思路

2. 代码实现

3. 复杂度分析

4. 思考与收获

方法二:一维dp数组01背包(滚动数组)

1. 思路

2. 代码实现

3. 复杂度分析

4. 思考与收获

LeetCode416. 分割等和子集

1. 思路

2. 代码实现

3. 复杂度分析

4. 思考与收获


01背包问题的理论基础

 背包问题系列:

对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包;至于其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了;

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的,**所以背包问题的理论基础重中之重是01背包,一定要理解透!**leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了。

题目描述

(LeetCode上没有纯粹的01背包问题)

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

 

方法一:二维dp数组01背包

1. 思路

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。这样其实是没有从底向上去思考,而是习惯性想到了背包;

那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是o(2^n),这里的n表示物品数量。所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

讲解所用到的例子:

背包最大重量为4,物品如下:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?以下讲解和图示中出现的数字都是以这个例子为例。

动态规划五部曲

1.1 确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

只看这个二维数组的定义,大家一定会有点懵,看下面这个图:

 

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的 ,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

1.2 确定递推公式

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少,那么可以有两个方向推出来dp[i][j]:

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值;

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

1.3 dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱,首先回顾一下递推公式,看看到底要初始化那些元素?

💡 递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

如果要得到dp[i][j],就要知道dp[i - 1][j]和dp[i - 1][j - weight[i]] ;dp[i - 1][j]在dp[i][j]的正上方,dp[i - 1][j - weight[i]]在dp[i][j]的左上方;

看清楚位置之后,我们就知道了,需要初始化的是这个矩阵的第一行以及第一列:

首先看第一列

如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

再看第一行

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值;

  • 那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小;
  • 当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

其他位置怎么初始化?

dp[0][j] 和 dp[i][0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值