【快速上手】用 Anaconda 搭建专属 Python 虚拟环境

在这里插入图片描述

认识Anaconda

Anaconda 是一个开源的 Python 和 R 语言的发行版本,其核心功能是帮助用户轻松创建、管理和切换不同的虚拟环境。在这些虚拟环境中,用户可以安装特定版本的 Python 以及各种所需的库和依赖项,从而实现不同项目之间的环境隔离,避免因依赖冲突等问题导致的项目运行错误。例如,一个项目需要 Python 3.6 和特定版本的 numpy 库,另一个项目需要 Python 3.9 和不同版本的 pandas 库,通过 Anaconda 创建的虚拟环境就可以轻松满足这些不同的需求,让每个项目都能在各自独立的环境中稳定运行。

Anaconda是一款可以方便搭建虚拟运行环境的软件

环境

在这里插入图片描述

  • 图(1)展示的是当前已有的不同 Anaconda 环境。其中,base环境是在安装 Anaconda 时默认创建的初始环境。
  • 为了确保环境的稳定性和可维护性,每个环境中一般推荐仅配置一个 Python 解释器。这样可以有效避免因多解释器版本冲突引发的问题。同时,在各个独立的环境中,你能够根据具体项目需求,自由安装所需的其他软件包 ,实现不同项目间的环境隔离。

更改计算机所处的运行环境

每当需要一个独立的环境来运行程序时,需要主动切换环境,方法主要有如下两点:

  1. 使用anaconda的交互界面中的environment选项,选择你要切换的环境

    在这里插入图片描述

    tips:

    切换过程比较慢,需要耐心等待

  2. 使用cmd切换

    # 切换环境
    conda activate [env_name]
    # 查看所有环境,以及当前所处环境(带*号)
    conda env list
    

    在这里插入图片描述

更改第三方开发工具的运行环境

如果需要联合第三方开发工具,如:pycharm、vscode、spyder等,则需要手动在第三方开发工具内部切换环境,方法如下:

Pycharm

首先打开Pycharm,创建一个新的项目,我们为这个项目配置运行环境

在这里插入图片描述

  • Interpreter type(解释器):我们选择Custom environment(自定义环境)
  • Environment(环境):如果需要创建一个新的环境,则选择Generate new;但是一般我们都是在创建并搭建好环境后再使用pycharm开发,所以选择Select existing(选择已有环境)
  • Type:选择Conda
  • Path to conda:这里需要选择是安装anaconda时其对应的程序conda.exe,使用该程序是来管理运行环境和包
  • Environment:从已有环境中指定项目的运行环境(有可能会遇到爆红警告的情况,可以在Pycharm编辑页面File->Invalidate Caches中点击Invalidate and Restart即可)

vscode

在这里插入图片描述

首先下载python扩展(扩展中搜索python)

在这里插入图片描述

创建python文件+编辑好代码,使用ctrl+shift+p选项,在下拉窗口中选择Selet interpreter,然后指定对应的python环境即可

spyder

在这里插入图片描述

该软件可以在Anaconda的home页面中安装(每个环境的安装是独立的);安装好之后,启动spyder

在这里插入图片描述

依次选择控制台->偏好->Python解释器,然后选择对应环境下的 Python 解释器(这里的python是每个独立环境下的python程序,此处为作者自定义路径,所以可能会和实际操作时有所差别);选择好后,点击左上角文件->重启

如何安装所需包

  1. 最方便的安装方法: 使用Anaconda交互界面安装
    在这里插入图片描述

    1. 选择ALL,查看所有的包
    2. 右上角搜索需要安装的包名
    3. 勾选要安装的包
    4. 点击应用(在点击之后会进行check,如果你缺乏某些运行该包所必须的依赖包,则会报错。此时需要你先将依赖安装好,再安装该包)
  2. 更优秀的安装方法

由于各种版本适配问题,Anaconda 交互界面可能难以安装到所需版本,导致包之间不兼容。使用 conda 命令从软件包库安装在一定程度上能更好地解决版本问题,但同样也可能存在版本冲突和兼容性风险。例如:

# 搜索对应包的所有版本
conda search tensorflow-gpu -c conda-forge
# 安装对应包的版本
conda install cudnn==8.1.0.77 -c conda-forge
  1. 较快的安装方法

如果网络较差,安装不成功,可进入 PyPI 官网下载指定的.whl 文件进行离线安装。下载好之后,使用指令:

# 其中[path_package_name.whl] 需替换为实际的.whl 文件的路径和文件名。
pip install [path_package_name.whl]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值