吴恩达机器Deeplearning.ai课程学习记录:分类问题(1)

前面线性回归的内容主要关注于预测一个数字,而在这一章中间更加关注分类(classification)问题。

目录

目的与动机

逻辑回归

数学函数——Sigmoid

从sigmoid到逻辑回归过程

决策边界


目的与动机

目前已经学习的线性回归算法并不能很好地解决分类问题,通过下图可以很好地进行说明。

可以看到,随着右边的一个特例叉叉(恶性肿瘤),使得预测的精准程度发生了较大的误差,这就导致线性回归在分类问题上的效果不佳,添加了数据,却导致结果更差了。

由此,作者引入了逻辑回归算法的概念。

逻辑回归

逻辑回归的使用范围很广,经常应用于分类问题,它拟合出来经常是这亚子的曲线:

在数轴上也可以看出,随着肿瘤大小x的变化,y的变化范围是从0至1的(我个人喜欢理解成概率),比如某个x对应的y是0.7,那么大于0.5,那么输出的结果就是yes(1),可以用数学符号表示为:

f_{w,b}(x)=P(y=1|x;w,b)

这就是用概率论的方式理解这个逻辑回归输出值的过程了。

数学函数——Sigmoid

Sigmoid函数也称为逻辑函数(sigmoid function),它长这个亚子:

注意,数学中标准的sigmoid函数和逻辑回归的函数它的数值取值范围可能是不同的,也就是平移或缩放一下子,当然它们的取值范围都是0~1之间。

它的方程表达式是这样子的:

g(z)=\frac{1}{1+e^-z}

从sigmoid到逻辑回归过程

第一步,我们设置:

z=w\cdot x+b

这有点类似于线性回归,只不过直线方程的对象变为了这里的z。

第二步,就是将z带入g(z)之中:

g(z)=\frac{1}{1+e^-z}

第三步,就可以让g(z)输出值了,此时为了便于理解,可以写出以下一系列等式:

f_{w,b}(x)=g(w\cdot x + b)=g(z)=\frac{1}{1+e^-z}

到这里,就可以写出逻辑回归的方程了,但是和线性回归一样,光有个方程是不够的,因为我们需要调整,使得获得的函数能够提供高准确率。

决策边界

在上面的图之中,我们看到sigmoid的函数在z等于零的时候,输出的值为0.5,可以理解为函数预测结果为1的概率为0.5,此时,z=0,可以根据sigmoid的函数公式自己带入看看。

g(z)=\frac{1}{1+e^-z}

而z等于0,是个非常特殊的边界,因为此时的概率为0.5,意味着此时的预测结果既不偏向于1,也不偏向于0,从另一个角度理解,就是只要z从零向左右哪怕移动了一点点,那么就会得到结果为1或者0,我们将z=w\cdot x +b=0的这条线称为决策边界,因为正是这条线“分割”了两种不同的预测结果。

例如,在如下的图中,具有两个维度x1,x2:

那么它的决策边界就是:z=w\cdot x_1+w\cdot x_2 +b =0,即图中紫色的线。

当然,决策边界也不一定是一条直线,例如以下的图:

反正只要满足z=0就ok了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江安的猪猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值