大连理工大学选修课——机器学习笔记(1):概述

机器学习概述

机器学习的本质

  • 机器学习是为了设计解决问题的算法。
    • 为输入与输出建立某种映射:
      • 类似于函数关系:

        Y = f ( X ) Y=f(X) Y=f(X)

      • 不同的映射方法体现了不同的思想。

相关概念

  • 深度学习是机器学习的一个分支
    • 深度学习是深层次化的神经网络。
    • 神经网络是机器学习的组成部分。

在这里插入图片描述

  • 数据挖掘 Data Mining
    • 机器学习方法在大数据库中的应用称为数据挖掘
  • 模式识别 Pattern Recognition
    模式:对应一个实体的类别。
    • 识别的效果依赖于分类模型的种类和模型的训练;分类模型的训练就是一种机器学习过程

经典应用

  • 关联性:
    • 多个事件之间的关联。关联规则(Association Rule)。体现统计学上的条件概率 P ( Y ∣ X ) P(Y|X) P(YX)
  • 分类
  • 回归分析

机器学习的种类

  • 有监督学习
    • 学习过程没有指导,提供先验信息。
    • 贝叶斯模型、支持向量机、决策树、神经网络。
    • 主要用于分类和回归分析。
  • 无监督学习
    • 学习过程没有任何指导。
    • 输入的学习样本没有任何先验知识。
    • 统计学中称之为密度估计(density estimation)。
    • 数据挖掘中称之为聚类(clusting)。
  • 强化学习
    • 通过学习选择能达到其目标的最优动作。
    • 从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。
    • 单个动作不重要,重要的是策略,即达到目标的正确动作的序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江安的猪猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值